Show simple item record

Alfvén wings in the lunar wake: The role of pressure gradients

dc.contributor.authorZhang, H.
dc.contributor.authorKhurana, K. K.
dc.contributor.authorKivelson, M. G.
dc.contributor.authorFatemi, S.
dc.contributor.authorHolmström, M.
dc.contributor.authorAngelopoulos, V.
dc.contributor.authorJia, Y. D.
dc.contributor.authorWan, W. X.
dc.contributor.authorLiu, L. B.
dc.contributor.authorChen, Y. D.
dc.contributor.authorLe, H. J.
dc.contributor.authorShi, Q. Q.
dc.contributor.authorLiu, W. L.
dc.date.accessioned2017-01-10T19:06:13Z
dc.date.available2018-01-08T19:47:53Zen
dc.date.issued2016-11
dc.identifier.citationZhang, H.; Khurana, K. K.; Kivelson, M. G.; Fatemi, S.; Holmström, M. ; Angelopoulos, V.; Jia, Y. D.; Wan, W. X.; Liu, L. B.; Chen, Y. D.; Le, H. J.; Shi, Q. Q.; Liu, W. L. (2016). "Alfvén wings in the lunar wake: The role of pressure gradients." Journal of Geophysical Research: Space Physics 121(11): 10,698-10,711.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/135354
dc.description.abstractStrongly conducting or magnetized obstacles in a flowing plasma generate structures called Alfvén wings, which mediate momentum transfer between the obstacle and the plasma. Nonconducting obstacles such as airless planetary bodies can generate such structures, which, however, have so far been seen only in sub‐Alfvénic regime. A novel statistical analysis of simultaneous measurements made by two ARTEMIS satellites, one in the solar wind upstream of the Moon and one in the downstream wake, and comparison of the data with results of a three‐dimensional hybrid model of the interaction reveal that the perturbed plasma downstream of the Moon generates Alfvén wings in super‐Alfvénic solar wind. In the wake region, magnetic field lines bulge toward the Moon and the plasma flows are significantly perturbed. We use the simulation to show that some of the observed bends of the field result from field‐aligned currents. The perturbations in the wake thus arise from a combination of compressional and Alfvénic perturbations. Because of the super‐Alfvénic background flow of the solar wind, the two Alfvén wings fold back to form a small intersection angle. The currents that form the Alfvén wing in the wake are driven by both plasma flow deceleration and a gradient of plasma pressure, positive down the wake from the region just downstream of the Moon. Such Alfvén wing structures, caused by pressure gradients in the wake and the resulting plasma slowdown, should exist downstream of any nonconducting body in a super‐Alfvénic plasma flow.Key PointsFlow deceleration, field line bending, and field‐aligned currents are found in the lunar wakeAlfven wings are confirmed in the lunar wakePressure gradients along the lunar wake and flow deceleration are the source for the lunar Alfven wings
dc.publisherJohn Wiley
dc.subject.otherlunar wake
dc.subject.otherAlfvén wings
dc.subject.otherfield‐aligned current
dc.subject.otherpressure gradient
dc.subject.otherflow deceleration
dc.titleAlfvén wings in the lunar wake: The role of pressure gradients
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135354/1/jgra53041.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135354/2/jgra53041_am.pdf
dc.identifier.doi10.1002/2016JA022360
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRidley, A. J. ( 2007 ), Alfvén wings at Earth’s magnetosphere under strong interplanetary magnetic fields, Ann. Geophys., 25, 533 – 542, doi: 10.5194/angeo-25-533-2007.
dc.identifier.citedreferenceGharaee, H., R. Rankin, R. Marchand, and J. Paral ( 2015 ), Properties of the lunar wake predicted by analytic models and hybrid‐kinetic simulations, J. Geophys. Res. Space Physics, 120, 3795 – 3803, doi: 10.1002/2014JA020907.
dc.identifier.citedreferenceGoertz, C. K. ( 1980 ), Io’s interaction with the plasma torus, J. Geophys. Res., 85, 2949 – 2956, doi: 10.1029/JA085iA06p02949.
dc.identifier.citedreferenceHalekas, J. S., Y. Saito, G. T. Delory, and W. M. Farrell ( 2011 ), New views of the lunar plasma environment, Planet. Space Sci., 59 ( 14 ), 1681 – 1694, doi: 10.1016/j.pss.2010.08.011.
dc.identifier.citedreferenceHalekas, J. S., Brain, D. A., and Holmström, M. ( 2015 ), Moon’s plasma wake, in Magnetotails in the Solar System, edited by A. Keiling, C. M. Jackman, and P. A. Delamere, chap. 9, pp. 149 – 167, John Wiley, Hoboken, N. J., doi: 10.1002/9781118842324.
dc.identifier.citedreferenceHoffman, J. H., R. R. Hodges Jr., F. S. Johnson, and D. E. Evans ( 1973 ), Lunar atmospheric composition results from Apollo 17 Proc. Lunar Planet. Sci. Conf. 4th, 2865–2875.
dc.identifier.citedreferenceHolmstrom, M., S. Fatemi, Y. Futaana, and H. Nilsson ( 2012 ), The interaction between the Moon and the solar wind, Earth Planets Space, 64, 237 – 245, doi: 10.5047/eps.2011.06.040.
dc.identifier.citedreferenceJia, X., R. Walker, M. Kivelson, K. Khurana, and J. Linker ( 2009 ), Properties of Ganymede’s magnetosphere inferred from improved three‐dimensional MHD simulations, J. Geophys. Res., 114, A09209, doi: 10.1029/2009JA014375.
dc.identifier.citedreferenceJia, Y.‐D., Y. J. Ma, C. T. Russell, H. R. Lai, G. Toth, and T. I. Gombosi ( 2011 ), Perpendicular flow deviation in magnetized counter‐streaming plasma, Icarus, 218 ( 2 ), 895 – 905, doi: 10.1016/j.icarus.2012.01.017.
dc.identifier.citedreferenceKhurana, K. K., C. T. Russell, and M. K. Dougherty ( 2008 ), Magnetic portraits of Tethys and Rhea, Icarus, 193, 465 – 474, doi: 10.1016/j.icarus.2007.08.005.
dc.identifier.citedreferenceKivelson, M. G., K. K. Khurana, F. V. Coroniti, S. Joy, C. T. Russell, R. J. Walker, J. Warnecke, L. Bennett, and C. Polanskey ( 1997 ), The magnetic field and magnetosphere of Ganymede, Geophys. Res. Lett., 24 ( 17 ), 2155 – 2158, doi: 10.1029/97GL02201.
dc.identifier.citedreferenceKopp, A., and Ip, W.‐H. ( 2002 ), Resistive MHD simulations of Ganymede’s magnetosphere 2. Time variabilities of the magnetic field topology, J. Geophys. Res., 107 ( A12 ), 1490, doi: 10.1029/2001JA005071.
dc.identifier.citedreferenceLinker, J. A., K. K. Khurana, M. G. Kivelson, and R. J. Walker ( 1998 ), MHD simulations of Io’s interaction with the plasma torus, J. Geophys. Res., 103 ( E9 ), 19,867 – 19,877, doi: 10.1029/98JE00632.
dc.identifier.citedreferenceLyon, E. F., H. S. Bridge, and J. H. Binsack ( 1967 ), Explorer 35 plasma measurements in the vicinity of the moon, J. Geophys. Res., 72 ( 23 ), 6113 – 6117, doi: 10.1029/JZ072i023p06113.
dc.identifier.citedreferenceMcFadden, J. P., C. W. Carlson, D. Larson, M. Ludlam, R. Abiad, B. Elliott, P. Turin, M. Marckwordt, and V. Angelopoulos ( 2008 ), The THEMIS ESA plasma instrument and in‐flight calibration, Space Sci. Rev., 141, 277 – 302, doi: 10.1007/s11214-008-9440-2.
dc.identifier.citedreferenceNess, N. F., K. W. Behannon, C. S. Searce, and S. C. Cantarano ( 1967 ), Early results from the magnetic field experiment on lunar Explorer 35, J. Geophys. Res., 72 ( 23 ), 5769 – 5778, doi: 10.1029/JZ072i023p05769.
dc.identifier.citedreferenceNeubauer, F. ( 1980 ), Nonlinear standing Alfvén wave current system at Io: Theory, J. Geophys. Res., 85, 1171 – 1178, doi: 10.1029/JA085iA03p01171.
dc.identifier.citedreferenceOgilvie, K. W., J. T. Steinberg, R. J. Fitzenreiter, C. J. Owen, A. J. Lazarus, W. M. Farrell, and R. B. Torbert ( 1996 ), Observations of the lunar plasma wake from the WIND spacecraft on December 27, 1994, Geophys. Res. Lett., 23 ( 10 ), 1255 – 1258, doi: 10.1029/96GL01069.
dc.identifier.citedreferenceRennilson, J. J., and D. R. Criswell ( 1974 ), Surveyor observations of lunar horizon glow, Moon, 10, 121 – 142, doi: 10.1007/BF00655715.
dc.identifier.citedreferenceSaito, Y., et al. ( 2008 ), Solar wind proton reflection at the lunar surface: Low energy ion measurements by MAP‐PACE onboard SELENE (KAGUYA), Geophys. Res. Lett., 35, L24205, doi: 10.1029/2008GL036077.
dc.identifier.citedreferenceSamir, U., K. H. Wright Jr., and N. H. Stone ( 1983 ), The expansion of a plasma into a vacuum: Basic phenomena and processes and applications to space plasma physics, Rev. Geophys., 21, 1631 – 1646, doi: 10.1029/RG021i007p01631.
dc.identifier.citedreferenceSimon, S., H. Kriegel, J. Saur, A. Wennmacher, F. M. Neubauer, E. Roussos, U. Motschmann, and M. K. Dougherty ( 2012 ), Analysis of Cassini magnetic field observations over the poles of Rhea, J. Geophys. Res., 117, A07211, doi: 10.1029/2012JA017747.
dc.identifier.citedreferenceSonett, C. P., D. S. Colburn, and R. G. Currie ( 1967 ), The intrinsic magnetic field of the Moon, J. Geophys. Res., 72 ( 21 ), 5503 – 5507, doi: 10.1029/JZ072i021p05503.
dc.identifier.citedreferenceSouthwood, D. J., M. G. Kivelson, R. J. Walker, and J. A. Slavin ( 1980 ), Io and its plasma environment, J. Geophys. Res., 85, 5959 – 5968, doi: 10.1029/JA085iA11p05959.
dc.identifier.citedreferenceStubbs, T. J., R. R. Vondrak, and W. M. Farrell ( 2006 ), A dynamic fountain model for lunar dust, in Moon and Near‐Earth Objects, edited by P. Ehrenfreund, B. Foing, and A. Cellino, pp. 59 – 66, Elsevier Science Bv, Amsterdam.
dc.identifier.citedreferenceVernisse, Y., H. Kriegel, S. Wiehle, U. Motschmann, and K.‐H. Glassmeier ( 2013 ), Stellar winds and planetary bodies simulations: Lunar type interaction in super‐Alfvenic and sub‐Alfvenic flows, Planet. Space Sci., 84, 37 – 47, doi: 10.1016/j.pss.2013.04.004.
dc.identifier.citedreferenceWang, Y. C., J. Muller, W.‐H. Ip, and U. Motschmann ( 2011 ), A 3D hybrid simulation study of the electromagnetic field distributions in the lunar wake, Icarus, 216 ( 2 ), 415 – 425, doi: 10.1016/j.icarus.2011.09.021.
dc.identifier.citedreferenceWhang, Y. C., and N. F. Ness ( 1970 ), Observations and interpretation of lunar mach cone, J. Geophys. Res., 75 ( 31 ), 6002 – 6010, doi: 10.1029/JA075i031p06002.
dc.identifier.citedreferenceXie, L. H., L. Li, Y. T. Zhang, and D. L. De Zeeuw ( 2013 ), Three‐dimensional MHD simulation of the lunar wake, Sci. China‐Earth Sci., 56 ( 2 ), 330 – 338, doi: 10.1007/s11430-012-4383-6.
dc.identifier.citedreferenceZhang, H., K. K. Khurana, M. G. Kivelson, V. Angelopoulos, W. X. Wan, L. B. Liu, Q.‐G. Zong, Z. Y. Pu, Q. Q. Shi, and W. L. Liu ( 2014 ), Three‐dimensional lunar wake reconstructed from ARTEMIS data, J. Geophys. Res. Space Physics, 119, 5220 – 5243, doi: 10.1002/2014JA020111.
dc.identifier.citedreferenceZook, H. A., and J. E. McCoy ( 1991 ), Large‐scale lunar horizon glow and a high altitude lunar dust exosphere, Geophys. Res. Lett., 18, 2117 – 2120, doi: 10.1029/91GL02235.
dc.identifier.citedreferenceAngelopoulos, V. ( 2011 ), The ARTEMIS mission, Space Sci. Rev., doi: 10.1007/s11214-010-9687-2.
dc.identifier.citedreferenceAuster, H. U., et al. ( 2008 ), The THEMIS fluxgate magnetometer, Space Sci. Rev., 141, 235 – 264, doi: 10.1007/s11214-008-9365-9.
dc.identifier.citedreferenceClack, D., J. C. Kasper, A. J. Lazarus, J. T. Steinberg, and W. M. Farrell ( 2004 ), Wind observations of extreme ion temperature anisotropies in the lunar wake, Geophys. Res. Lett., 31, L06812, doi: 10.1029/2003GL018298.
dc.identifier.citedreferenceColburn, D. S., R. G. Currie, J. D. Mihalov, and C. P. Sonett ( 1967 ), Diamagnetic solar‐wind cavity discovered behind moon, Science, 158, 1040 – 1042, doi: 10.1126/science.158.3804.1040.
dc.identifier.citedreferenceDrell, S., H. Foley, and M. Ruderman ( 1965 ), Drag and propulsion of large satellites in the ionosphere: An Alfvén propulsion engine in space, J. Geophys. Res., 70, 3131 – 3145, doi: 10.1029/JZ070i013p03131.
dc.identifier.citedreferenceEngland, A. W., G. Simmons, and D. Strangway ( 1968 ), Electrical conductivity of the Moon, J. Geophys. Res., 73 ( 10 ), 3219 – 3226, doi: 10.1029/JB073i010p03219.
dc.identifier.citedreferenceFatemi, S., M. Holmstrom, Y. Futaana, S. Barabash, and C. Lue ( 2013 ), The lunar wake current systems, Geophys. Res. Lett., 40, 17 – 21, doi: 10.1029/2012GL054635.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.