Show simple item record

The Risk of Exposure to Diagnostic Ultrasound in Postnatal Subjects

dc.contributor.authorChurch, Charles C.
dc.contributor.authorCarstensen, Edwin L.
dc.contributor.authorNyborg, Wesley L.
dc.contributor.authorCarson, Paul L.
dc.contributor.authorFrizzell, Leon A.
dc.contributor.authorBailey, Michael R.
dc.date.accessioned2017-01-10T19:06:39Z
dc.date.available2017-01-10T19:06:39Z
dc.date.issued2008-04
dc.identifier.citationChurch, Charles C.; Carstensen, Edwin L.; Nyborg, Wesley L.; Carson, Paul L.; Frizzell, Leon A.; Bailey, Michael R. (2008). "The Risk of Exposure to Diagnostic Ultrasound in Postnatal Subjects." Journal of Ultrasound in Medicine 27(4): 565-592.
dc.identifier.issn0278-4297
dc.identifier.issn1550-9613
dc.identifier.urihttps://hdl.handle.net/2027.42/135382
dc.publisherAmerican Institute of Ultrasound in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.othernonthermal mechanism
dc.subject.otherintestinal hemorrhage
dc.subject.othercavitation
dc.subject.othermechanical effects
dc.subject.otherlung hemorrhage
dc.titleThe Risk of Exposure to Diagnostic Ultrasound in Postnatal Subjects
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiology, University of Michigan, Ann Arbor, Michigan USA
dc.contributor.affiliationotherCenter for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington.
dc.contributor.affiliationotherDepartment of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois USA
dc.contributor.affiliationotherDepartment of Physics, University of Vermont, Burlington, Vermont USA
dc.contributor.affiliationotherDepartment of Electrical Engineering, University of Rochester, Rochester, New York USA
dc.contributor.affiliationotherNational Center for Physical Acoustics, University of Mississippi, University, Mississippi USA
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135382/1/jum2008274565.pdf
dc.identifier.doi10.7863/jum.2008.27.4.565
dc.identifier.sourceJournal of Ultrasound in Medicine
dc.identifier.citedreferenceO’Brien WD Jr, Frizzell LA, Weigel RM, Zachary JF. Ultrasound-induced lung hemorrhage is not caused by inertial cavitation. J Acoust Soc Am 2000; 108: 1290 –1297.
dc.identifier.citedreferenceDalecki D, Raeman CH, Child SZ, Carstensen EL. Lung response to low-frequency underwater sound. J Acoust Soc Am 1999; 106: 2165.
dc.identifier.citedreferenceO’Brien WD, Zachary JF. Mouse lung damage from exposure to 30 kHz ultrasound. Ultrasound Med Biol 1994; 29: 287 –297.
dc.identifier.citedreferenceMeltzer RS, Adsumelli R, Risher W, et al. Lack of lung hemorrhage in humans after intraoperative transesophageal echocardiography with ultrasound exposure conditions similar to those causing lung hemorrhage in laboratory animals. J Am Soc Echocardiogr 1998; 11: 57 –60.
dc.identifier.citedreferenceAmerican Institute for Ultrasound in Medicine, National Electrical Manufacturers Association. Standard for Real-Time Display of Thermal and Mechanical Indices on Diagnostic Ultrasound Equipment. Laurel, MD: American Institute of Ultrasound in Medicine; Rosslyn, VA: National Electrical Manufacturers Association; 1992.
dc.identifier.citedreferenceAmerican Institute for Ultrasound in Medicine, National Electrical Manufacturers Association. Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment. Laurel, MD: American Institute of Ultrasound in Medicine; Rosslyn, VA: National Electrical Manufacturers Association; 1998.
dc.identifier.citedreferenceInternational Electrotechnical Commission. Medical Electrical Equipment, Part 2: Particular Requirements for the Safety of Ultrasonic Diagnostic and Monitoring Equipment. Ed 1.1. Geneva, Switzerland: International Electrotechnical Commission; 2004. Publication 60601-2-37.
dc.identifier.citedreferenceTeotico GA, Miller RJ, Frizzell LA, Zachary JF, O’Brien WD Jr. Attenuation coefficient estimates of mouse and rat chest wall. IEEE Trans Ultrason Ferroelectr Freq Control 2001; 48: 593 –601.
dc.identifier.citedreferenceTowa RT, Miller RJ, Frizzell LA, Zachary JF, O’Brien WD Jr. Attenuation coefficient and propagation speed estimates of rat and pig intercostal tissue as a function of temperature. IEEE Trans Ultrason Ferrorelectr Freq Control 2002; 49: 1411 –1420.
dc.identifier.citedreferenceMiller RJ, Frizzell LA, Zachary JF, O’Brien WD Jr. Attenuation coefficient and propagation speed estimates of intercostal tissue as a function of pig age. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 1421 –1429.
dc.identifier.citedreferenceO’Donnell M, Mimbs JW, Miller JG. The relationship between collagen and ultrasonic attenuation in myocardial tissue. J Acoust Soc Am 1979; 65: 512 –517.
dc.identifier.citedreferenceCarstensen EL, Schwan HP. Absorption of sound arising from the presence of intact cells in blood. J Acoust Soc Am 1959; 31: 185 –189.
dc.identifier.citedreferenceHartman CL, Child SZ, Penney DP, Carstensen EL. Ultrasonic heating of lung tissue. J Acoust Soc Am 1992; 91: 513 –516.
dc.identifier.citedreferenceHartman CL, Cox CA, Brewer L, Child SZ, Cox CF, Carstensen EL. Effects of lithotripter fields on development of chick embryos. Ultrasound Med Biol 1990; 16: 581 –585.
dc.identifier.citedreferenceDalecki D, Raeman CH, Child SZ, Penney DP, Mayer R, Carstensen EL. The influence of contrast agents on hemorrhage produced by lithotripter fields. Ultrasound Med Biol 1997; 23: 1435 –1439.
dc.identifier.citedreferenceRaeman CH, Dalecki D, Child SZ, Meltzer RS, Carstensen EL. Albunex does not increase the sensitivity of the lung to pulsed ultrasound. Echocardiography 1997; 14: 553 –558.
dc.identifier.citedreferenceDalecki D, Raeman CH, Child SZ, et al. Hemolysis in vivo from exposure to pulsed ultrasound. Ultrasound Med Biol 1997; 23: 307 –313.
dc.identifier.citedreferenceDalecki D, Child SZ, Raeman CH, Xing C, Gracewski S, Carstensen EL. Bioeffects of positive and negative acoustic pressures in mice infused with microbubbles. Ultrasound Med Biol 2000; 26: 1327 –1332.
dc.identifier.citedreferenceBailey MR, Dalecki D, Child SZ, et al. Bioeffects of positive and negative acoustic pressures in vivo. J Acoust Soc Am 1996; 100: 3941 –3946.
dc.identifier.citedreferenceFung YC, Yen RT, Tao ZL, Liu SQ. A hypothesis on the mechanism of trauma of lung tissue subjected to impact load. J Biomech Eng 1988; 110: 50 –56.
dc.identifier.citedreferenceFung YC. Strengh, trauma, and tolerance. In: Biomechanics Motion, Flow, Stress, and Growth. New York, NY: Springer-Verlag; 1990:chap 12.
dc.identifier.citedreferenceDalecki D, Child SZ, Raeman CH. Thresholds for sound-induced lung hemorrhage for frequencies from 100 Hz to 1 MHz. J Acoust Soc Am 2006; 119: 3375.
dc.identifier.citedreferenceRaeman CH, Child SZ, Dalecki D, Mayer R, Parker KJ, Carstensen EL. Damage to murine kidney and intestine from exposure to the fields of a piezoelectric lithotripter. Ultrasound Med Biol 1994; 20: 589 –594.
dc.identifier.citedreferenceDalecki D, Raeman CH, Child SZ, Carstensen EL. Thresholds for intestinal hemorrhage in mice exposed to a piezoelectric lithotripter. Ultrasound Med Biol 1995; 21: 1239 –1246.
dc.identifier.citedreferenceLehmann JF, Herrick JF. Biologic reaction to cavitation, a consideration for ultrasonic therapy. Arch Phys Med Rehab 1953; 39: 347 –356.
dc.identifier.citedreferenceMiller DL, Thomas RM. Heating as a mechanism for ultrasonically induced petechial hemorrhages in mouse intestine. Ultrasound Med Biol 1994; 20: 493 –503.
dc.identifier.citedreferenceDalecki D, Raeman CH, Child SZ, Carstensen EL. Intestinal hemorrhage from exposure to pulsed ultrasound. Ultrasound Med Biol 1995; 21: 1067 –1072.
dc.identifier.citedreferenceMiller DL, Gies RA. The interaction of ultrasonic heating and cavitation in vascular bioeffects on mouse intestine. Ultrasound Med Biol 1998; 24: 123 –128.
dc.identifier.citedreferenceMiller DL, Gies RA. Gas-body-based contrast agent enhances vascular bioeffects of 1.09 MHz ultrasound on mouse intestine. Ultrasound Med Biol 1998; 24: 1201 –1208.
dc.identifier.citedreferenceInternational Organization for Standardization. Medical Devices: Application of Risk Management to Medical Devices. Geneva, Switzerland: International Organization for Standardization; 2000. Publication 14971:2000.
dc.identifier.citedreferenceHerbertz J. Spontaneous cavitation in liquids free of nuclei. In: Fortschritte der Akustik DAGA ’88. Bad Honnef, Germany: DPG GmbH; 1988:439–442.
dc.identifier.citedreferenceNational Council on Radiation Protection and Measurements. Exposure Criteria for Medical Diagnostic Ultrasound, II: Criteria Based on All Known Mechanisms. Bethesda, MD: National Council on Radiation Protection and Measurements; 2002. Report 140.
dc.identifier.citedreferenceDalecki D, Child SZ, Raeman CH, Carstensen EL. Tactile perception of ultrasound. J Acoust Soc Am 1995; 97: 3165 –3170.
dc.identifier.citedreferenceTsirulnikov EM, Vartanyan IA, Gersuni GV, Rosenblyum AS, Pudov VI, Gavrilov LR. Use of amplitude-modulated focused ultrasound for diagnosis of hearing disorders. Ultrasound Med Biol 1988; 14: 277 –285.
dc.identifier.citedreferenceMagee TR, Davies AH. Auditory phenomena during transcranial Doppler insonation of the basilar artery. J Ultrasound Med 1993; 12: 747 –750.
dc.identifier.citedreferenceArulkumaran S, Talbert DG, Nyman M, Westgren M, Hsu TS, Ratman SS. Audible in utero sound from ultrasound scanner [letter]. Lancet 1991; 338: 704 –705.
dc.identifier.citedreferenceFatemi M, Ogburn PL Jr, Greenleaf JF. Fetal stimulation by pulsed diagnostic ultrasound. J Ultrasound Med 2001; 20: 883 –889.
dc.identifier.citedreferenceStratmeyer M, Greenleaf J, Dalecki D, Salvesen K. Fetal ultrasound: mechanical effects. J Ultrasound Med 2008; 27: 597 –605.
dc.identifier.citedreferenceDyson M, Brookes M. Stimulation of bone repair by ultrasound. In: Lerski A, Morley P (eds). Ultrasound ’82. Elmsford, NY: Pergamon Press; 1983:61–66.
dc.identifier.citedreferenceWang SJ, Lewallen DG, Bolander ME, Chao EYS, Ilstrup DM, Greenleaf JF. Low-intensity ultrasound treatment increases strength in a rat femoral fracture model. J Orthop Res 1994; 12: 40 –47.
dc.identifier.citedreferenceLeung K-S, Lee W-S, Tsui H-F, Liu PP-L, Cheung W-H. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol 2004; 30: 389 –395.
dc.identifier.citedreferenceParvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res 1999; 17: 488 –494.
dc.identifier.citedreferenceParvizi J, Parpura JF, Greenleaf JF, Bolander ME. Calcium signaling is necessary for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J Orthop Res 2002; 20: 51 –57.
dc.identifier.citedreferenceGreenleaf JF, Argadine HM, Bolander ME. 1 kHz vibration stimulates ATDC5 chondrocytes. In: Hynynen K (ed). Proceedings of the Fifth International Symposium on Therapeutic Ultrasound. New York, NY: American Institute of Physics; 2006:49–53.
dc.identifier.citedreferenceSchaden W. Clinical experience with shock wave therapy of pseudarthrosis, delayed fracture healing, and cement-free endoprothesis loosening. In: Siebert W, Buch M (eds). Extracorporeal Shock Waves in Orthopaedics. Heidelberg, Germany: Springer-Verlag; 1997:137–148.
dc.identifier.citedreferenceWang C, Chen H, Chen C, Yang K. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res 2001; 387: 95 –101.
dc.identifier.citedreferenceO’Brien WD Jr, Deng CX, Harris GR, et al. The risk of exposure to diagnostic ultrasound in postnatal subjects: thermal effects. J Ultrasound Med 2008; 27: 517 –535.
dc.identifier.citedreferenceDalecki D, Keller BB, Raeman CH, Carstensen EL. Effects of ultrasound on the frog heart, I: thresholds for changes in cardiac rhythm and aortic pressure. Ultrasound Med Biol 1993; 19: 385 –390.
dc.identifier.citedreferenceDalecki D, Child SZ, Raeman CH, Cox C, Penney DP, Carstensen EL. Age dependence of ultrasonically induced lung hemorrhage in mice. Ultrasound Med Biol 1997; 23: 767 –776.
dc.identifier.citedreferencePurnell EW, Sokollu A, Torchia R, Tanner N. Focal chorioretinitis produced by ultrasound. Invest Ophthalmol 1964; 3: 657 –664.
dc.identifier.citedreferenceLizzi FL, Coleman DJ, Driller J, Franzen LA, Jakobiec FA. Experimental, ultrasonically induced lesions in the retina, choroid, and sclera. Invest Ophthalmol Vis Sci 1978; 17: 350 –360.
dc.identifier.citedreferenceHerman BA, Harris GR. Theoretical study of steady-state temperature rise within the eye due to ultrasound insonation. IEEE Trans Ultrason Ferroelectr Freq Control 1999; 46: 1566 –1574.
dc.identifier.citedreferenceNyborg WL. Physical principles of ultrasound. In: Fry FJ (ed). Ultrasound: Its Applications in Medicine and Biology. Part I. New York, NY: Elsevier; 1978:1–75.
dc.identifier.citedreferenceNyborg WL. Biological effects of sound and ultrasound. In: Trigg GL (ed). Encyclopedia of Applied Physics. New York, NY: VCH Publishers Inc; 1991:403–420.
dc.identifier.citedreferenceDyson M, Woodward B, Pond JB. Flow of red blood cells stopped by ultrasound. Nature 1971; 232: 572 –573.
dc.identifier.citedreferenceNyborg WL. Acoustic streaming due to attenuated plane waves. J Acoust Soc Am 1953; 25: 68 –75.
dc.identifier.citedreferenceStavros AT, Dennis MA. Ultrasound of breast pathology. In: Parker SH, Jobe WE (eds). Percutaneous Breast Biopsy. New York, NY: Raven Press; 1993:111–115.
dc.identifier.citedreferenceNightingale KR, Kornguth PJ, Walker WF, McDermott BA, Trahey GE. A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast. Ultrasound Med Biol 1995; 21: 745 –751.
dc.identifier.citedreferenceNightingale KR, Kornguth PJ, Trahey GE. The use of acoustic streaming in breast lesion diagnosis: a clinical study. Ultrasound Med Biol 1999; 25: 75 –87.
dc.identifier.citedreferenceTrahey GE, Palmeri ML, Bentley RC, Nightingale KR. Acoustic radiation force impulse imaging of the mechanical properties of arteries: in vivo and ex vivo results. Ultrasound Med Biol 2004; 30: 1163 –1171.
dc.identifier.citedreferencePalmeri ML, Frinkley KD, Zhai L, et al. Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract. Ultrason Imaging 2005; 27: 75 –88.
dc.identifier.citedreferenceEvan AP, McAteer JA, Williams JC, et al. Shock wave physics of lithotripsy: mechanisms of shock wave action and progress toward improved SWL. In: Moore R, Bishoff JT, Loening S, Docimo SG (eds). Textbook of Minimally Invasive Urology. London, England: Martin Dunitz Ltd; 2004:425–438.
dc.identifier.citedreferenceHoward DD, Sturtevant B. In vitro study of the mechanical effects of shock-wave lithotripsy. Ultrasound Med Biol 1997; 23: 1107 –1122.
dc.identifier.citedreferenceBurov VA, Dmitrieva NP, Rudenko OV. Nonthermal impact of high-intensity ultrasound on a malignant tumor. In: Rudenko OV, Sapozhnikov OA (eds). Nonlinear Acoustics at the Beginning of the 21st Century. Vol I. Moscow, Russia; Moscow State University; 2002:411–416.
dc.identifier.citedreferenceMiller DL, Averkiou MA, Brayman AA, et al. Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med 2008; 27: 611 –632.
dc.identifier.citedreferenceDevin C Jr. Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water. J Acoust Soc Am 1959; 31: 1654 –1667.
dc.identifier.citedreferenceLeighton TG. The Acoustic Bubble. San Diego, CA: Academic Press; 1994.
dc.identifier.citedreferenceProsperetti A. Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. J Acoust Soc Am 1977; 61: 17 –27.
dc.identifier.citedreferenceGilmore FR. The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid. Pasadena, CA: California Institute of Technology; 1952.
dc.identifier.citedreferenceFlynn HG. Cavitation dynamics, I: a mathematical formulation. J Acoust Soc Am 1975; 57: 1379 –1396.
dc.identifier.citedreferenceKeller JB, Miksis MJ. Bubble oscillations of large amplitude. J Acoust Soc Am 1980; 68: 628 –633.
dc.identifier.citedreferenceMatsumoto Y, Watanabe M. Nonlinear oscillation of gas bubbles with internal phenomena. Jpn Soc Mech Eng Int J 1989; 32: 157 –162.
dc.identifier.citedreferenceProsperetti A, Lezzi A. Bubble dynamics in a compressible liquid, part 1: first-order theory. J Fluid Mech 1986; 168: 457 –478.
dc.identifier.citedreferenceFlynn HG, Church CC. Transient pulsations of small gas bubbles in water. J Acoust Soc Am 1988; 84: 985 –998.
dc.identifier.citedreferenceFlynn HG. Cavitation dynamics, II: free pulsations and models for cavitation bubbles. J Acoust Soc Am 1975; 58: 1160 –1170.
dc.identifier.citedreferenceApfel RE. Acoustic cavitation: a possible consequence of biomedical uses of ultrasound. Br J Cancer Suppl 1982; 5: 140 –146.
dc.identifier.citedreferenceApfel RE. Possibility of microcavitation from diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 1986; 32: 139 –142.
dc.identifier.citedreferenceFlynn HG. Generation of transient cavities in liquids by microsecond pulses of ultrasound. J Acoust Soc Am 1982; 72: 1926 –1932.
dc.identifier.citedreferenceApfel RE, Holland CK. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol 1991; 17: 179 –185.
dc.identifier.citedreferenceChurch CC. Frequency, pulse length, and the mechanical index. Acoust Res Lett Online 2005; 6: 162 –168.
dc.identifier.citedreferenceYang X, Church CC. Nonlinear dynamics of gas bubbles in viscoelastic media. Acoust Res Lett Online 2005; 6: 151 –156.
dc.identifier.citedreferenceBailey MR, Pishchalnikov YA, Sapozhnikov OA, et al. Cavitation detection during shock wave lithotripsy. Ultrasound Med Biol 2005; 31: 1245 –1256.
dc.identifier.citedreferenceEvan AP, Willis LR, Lingeman J, McAteer J. Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 1998; 78: 1 –8.
dc.identifier.citedreferenceColeman AJ, Kodama T, Choi MJ, Adams T, Saunders JE. The cavitation threshold of human tissue exposed to 0.2-MHz pulsed ultrasound: preliminary measurements based on a study of clinical lithotripsy. Ultrasound Med Biol 1995; 21: 405 –417.
dc.identifier.citedreferenceColeman AJ, Choi MJ, Saunders JE. Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med Biol 1996; 22: 1079 –1087.
dc.identifier.citedreferenceChurch CC. Spontaneous, homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol 2002; 28: 1349 –1364.
dc.identifier.citedreferenceMiller DL, Thomas RM, Williams AR. Mechanisms for hemolysis by ultrasonic cavitation in the rotating exposure system. Ultrasound Med Biol 1991; 17: 171 –180.
dc.identifier.citedreferenceCoakley WT, Nyborg WL. Cavitation, dynamics of gas bubbles: applications. In: Fry FJ (ed). Ultrasound: Its Application in Medicine and Biology. New York, NY: Elsevier; 1978:chap II.
dc.identifier.citedreferenceNyborg WL, Miller DL. Biophysical implications of bubble dynamics. In: van Wijngaarden L (ed). The Mechanics and Physics of Bubbles in Liquids. New York, NY: Kluwer; 1982:17–24.
dc.identifier.citedreferenceNyborg WL, Miller DL. Biophysical implications of bubble dynamics. Appl Sci Res 1982; 38: 17 –24.
dc.identifier.citedreferenceBrayman AA, Miller MW. Cell density dependence of the ultrasonic degassing of fixed erythrocyte suspensions. Ultrasound Med Biol 1993; 19: 243 –252.
dc.identifier.citedreferenceRooney JA. Hemolysis near an ultrasonically pulsating gas bubble. Science 1970; 169: 869 –871.
dc.identifier.citedreferenceRooney JA. Shear as a mechanism for sonically induced biological effects. J Acoust Soc Am 1972; 52: 1718 –1724.
dc.identifier.citedreferenceRooney JA. Hydrodynamic shearing of biological cells. J Biol Phys 1973; 2: 26 –40.
dc.identifier.citedreferenceNyborg WL. Acoustic streaming. In: Hamilton MF, Blackstock DT (eds). Nonlinear Acoustics. San Diego, CA: Academic Press; 1997:chap 7.
dc.identifier.citedreferenceCleveland RO, Lifshitz DA, Connors BA, Evan AP, Willis LR, Crum LA. In vivo pressure measurement of lithotripsy shock waves. Ultrasound Med Biol 1998; 24: 293 –306.
dc.identifier.citedreferenceLokhandwalla M, Sturtevant B. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol 2000; 45: 1923 –1940.
dc.identifier.citedreferenceLokhandwalla M, Sturtevant B. Mechanical haemolysis in shock wave lithotripsy (SWL), I: analysis of cell deformation due to SWL flow-fields. Phys Med Biol 2001; 46: 413 –437.
dc.identifier.citedreferenceLokhandwalla M, McAteer JA, Williams JC Jr, Sturtevant B. Mechanical haemolysis in shock wave lithotripsy (SWL), II: In vitro cell lysis due to shear. Phys Med Biol 2001; 46: 1245 –1264.
dc.identifier.citedreferenceMakino K, Mossoba MM, Riesz P. Chemical effects of ultrasound on aqueous solutions: evidence for ·OH and ·H by spin trapping. J Am Chem Soc 1982; 104: 3537 –3539.
dc.identifier.citedreferenceArmour EP, Corry PM. Cytotoxic effects of ultrasound: in vitro dependence on gas content, frequency, radical scavengers and attachment. Radiat Res 1982; 89: 369 –380.
dc.identifier.citedreferenceVerral RE, Sehgal CM. Sonoluminescence. In: Suslick KS (ed). Ultrasound: Its Chemical, Physical, and Biological Effects. New York, NY: VCH Publishers; 1988:chap 6.
dc.identifier.citedreferenceEdmonds PD, Sancier KM. Evidence for free radical production by ultrasound cavitation in biological media. Ultrasound Med Biol 1983; 9: 635 –639.
dc.identifier.citedreferenceDoida Y, Miller MW, Cox C, Church CC. Confirmation of an ultrasound-induced mutation in two in-vitro mammalian cell lines. Ultrasound Med Biol 1990; 16: 699 –705.
dc.identifier.citedreferenceDoida Y, Brayman AA, Miller MW. Modest enhancement of ultrasound-induced mutations in V-79 cells in-vitro Ultrasound Med Biol 1992; 18: 465 –469.
dc.identifier.citedreferenceColeman AJ, Saunders JE, Crum LA, Dyson M. Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med Biol 1987; 13: 69 –76.
dc.identifier.citedreferenceKodama T, Takayama K. Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy. Ultrasound Med Biol 1998; 24: 723 –738.
dc.identifier.citedreferenceDelacretaz G, Walsh JT Jr, Asshauer T. Dynamic polariscopic imaging of laser-induced strain in a tissue phantom. Appl Phys Lett 1997; 70: 3510 –3512.
dc.identifier.citedreferenceGracewski SM, Miao H, Dalecki D. Ultrasonic excitation of a bubble near a rigid or deformable sphere: implications for ultrasonically induced hemolysis. J Acoust Soc Am 2005; 117: 1440 –1447.
dc.identifier.citedreferenceZhong P, Zhou Y, Zhu S. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med Biol 2001; 27: 119 –134.
dc.identifier.citedreferenceCarstensen EL, Child SZ, Lam S, Miller DL, Nyborg WL. Ultrasonic gas-body activation in Drosophila. Ultrasound Med Biol 1983; 9: 473 –477.
dc.identifier.citedreferenceCarstensen EL, Campbell DS, Hoffman D, Child SZ, Ayme-Bellegarda EJ. Killing of Drosophila larvae by the fields of an electrohydraulic lithotripter. Ultrasound Med Biol 1990; 16: 687 –698.
dc.identifier.citedreferenceBarenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 1962; 7: 55 –129.
dc.identifier.citedreferenceOrtiz M. Microcrack coalescence and macroscopic crack growth initiation in brittle solids. Int J Solids Struct 1988; 24: 231 –250.
dc.identifier.citedreferenceGross DR, Miller DL, Williams AR. A search for ultrasonic cavitation within the canine cardiovascular system. Ultrasound Med Biol 1985; 11: 85 –97.
dc.identifier.citedreferenceIvey JA, Gardner EA, Fowlkes JB, Rubin JM, Carson PL. Acoustic generation of intra-arterial contrast boluses. Ultrasound Med Biol 1995; 21: 757 –767.
dc.identifier.citedreferenceHwang JH, Brayman AA, Reidy MA, Matula TJ, Kimmey MB, Crum LA. Vascular effects induced by combined 1-MHz ultrasound and microbubble contrast agent treatments in vivo. Ultrasound Med Biol 2005; 31: 553 –564.
dc.identifier.citedreferenceFry FJ, Kossoff G, Eggleton RC, Dunn F. Threshold ultrasonic dosages for structural changes in the mammalian brain. J Acoust Soc Am 1970; 48 (suppl 2): 1413 –1417.
dc.identifier.citedreferenceDunn F, Fry FJ. Ultrasonic threshold dosages for the mammalian central nervous system. IEEE Trans Biomed Eng 1971; 18: 253 –256.
dc.identifier.citedreferenceFrizzell LA. Threshold dosages for damage to mammalian liver by high intensity focused ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 1988; 35: 578 –581.
dc.identifier.citedreferenceTaylor KJW, Pond J. The effects of ultrasound of varying frequencies on rat liver. J Pathol 1970; 100: 287 –293.
dc.identifier.citedreferenceLee CS, Frizzell LA. Exposure levels for ultrasonic cavitation in the mouse neonate. Ultrasound Med Biol 1988; 14: 735 –742.
dc.identifier.citedreferenceFrizzell LA, Chen E, Lee C. Effects of pulsed ultrasound on the mouse neonate: hind limb paralysis and lung hemorrhage. Ultrasound Med Biol 1994; 20: 53 –63.
dc.identifier.citedreferenceHynynen K. The threshold for thermally significant cavitation in dog’s thigh muscle in vivo. Ultrasound Med Biol 1991; 17: 157 –169.
dc.identifier.citedreferenceFowlkes JB, Parsons JE, Xu Z, et al. The disruption of tissue structure using high-intensity pulsed ultrasound. J Acoust Soc Am 2005; 117: 2371.
dc.identifier.citedreferenceParsons JE, Cain CA, Fowlkes JB. Characterizing pulsed ultrasound therapy for production of cavitationally induced lesions. In: ter Haar GR, Rivens E (eds). Proceedings of the Fourth International Symposium on Therapeutic Ultrasound. Vol 754. Melville, NY: American Institute of Physics; 2005:178–180.
dc.identifier.citedreferenceter Haar GR, Daniels S. Evidence for ultrasonically induced cavitation in vivo. Phys Med Biol 1981; 26: 1145 –1149.
dc.identifier.citedreferenceter Haar GR, Daniels S, Eastaugh KC, Hill CR. Ultrasonically induced cavitation in vivo. Br J Cancer Suppl 1982; 45: 151 –155.
dc.identifier.citedreferenceHarvey EN. Physical factors in bubble formation. In: Fulton JF (ed). Decompression Sickness. Philadelphia, PA: WB Saunders Co; 1951:90–114.
dc.identifier.citedreferenceBuckles RG. The physics of bubble formation and growth. Aerosp Med 1968; 39: 1062 –1069.
dc.identifier.citedreferenceChild SZ, Hartman CL, Schery LA, Carstensen EL. Lung damage from exposure to pulsed ultrasound. Ultrasound Med Biol 1990; 16: 817 –825.
dc.identifier.citedreferenceTarantal AF, Canfield DR. Ultrasound-induced lung hemorrhage in the monkey. Ultrasound Med Biol 1994; 20: 65 –72.
dc.identifier.citedreferencePenney DP, Schenk EA, Maltby K, Hartman-Raeman C, Child SZ, Carstensen EL. Morphological effects of pulsed ultrasound in the lung. Ultrasound Med Biol 1993; 19: 127 –135.
dc.identifier.citedreferenceRaeman CH, Child SZ, Carstensen EL. Timing of exposures in ultrasonic hemorrhage of murine lung. Ultrasound Med Biol 1993; 19: 507 –512.
dc.identifier.citedreferenceRaeman CH, Child SZ, Dalecki D, Cox C, Carstensen EL. Exposure-time dependence of the threshold for ultrasonically induced murine lung hemorrhage. Ultrasound Med Biol 1996; 22: 139 –141.
dc.identifier.citedreferenceZachary JF, O’Brien WD Jr. Lung lesions induced by continuous- and pulsed-wave (diagnostic) ultrasound in mice, rabbits and pigs. Vet Pathol 1995; 32: 43 –54.
dc.identifier.citedreferenceO’Brien WD Jr, Frizzell LA, Schaeffer DJ, Zachary JF. Superthreshold behavior of ultrasound-induced lung hemorrhage in adult mice and rats: role of pulse repetition frequency and exposure duration. Ultrasound Med Biol 2001; 27: 267 –277.
dc.identifier.citedreferenceHolland CK, Deng CX, Apfel RE, Alderman JL, Fernandez LA, Taylor KJ. Direct evidence of cavitation in vitro from diagnostic ultrasound. Ultrasound Med Biol 1996; 22: 917 –925.
dc.identifier.citedreferenceKramer JM, Waldrop TG, Frizzell LA, Zachary JF, O’Brien WD Jr. Cardiopulmonary function in rats with lung hemorrhage induced by exposure to superthreshold pulsed ultrasound. J Ultrasound Med 2001; 20: 1197 –1206.
dc.identifier.citedreferenceZachary JF, Frizzell LA, Norrell KS, Blue JP, Miller RJ, O’Brien WD Jr. Temporal and spatial evaluation of lesion reparative responses following superthreshold exposure of rat lung to pulsed ultrasound. Ultrasound Med Biol 2001; 27: 829 –839.
dc.identifier.citedreferenceO’Brien WD Jr, Simpson DG, Frizzell LA, Zachary JF. Superthreshold behavior and threshold estimation of ultrasound-induced lung hemorrhage in adult rats: role of beamwidth. IEEE Trans Ultrason Ferroelectr Freq Control 2001; 48: 1695 –1705.
dc.identifier.citedreferenceO’Brien WD Jr, Kramer JM, Waldrop TG, Frizzell LA, Zachary JF. Ultrasound-induced lung hemorrhage: role of acoustic boundary conditions at the pleural surface. J Acoust Soc Am 2002; 111: 1102 –1109.
dc.identifier.citedreferenceO’Brien WD Jr, Simpson DG, Frizzell LA, Zachary JF. Threshold estimates and superthreshold behavior of ultrasound-induced lung hemorrhage in adult rats: role of pulse duration. Ultrasound Med Biol 2003; 29: 1625 –1634.
dc.identifier.citedreferenceO’Brien WD Jr, Simpson DG, Frizzell LA, Zachary JF. Effect of contrast agent on the incidence and magnitude of ultrasound-induced lung hemorrhage in rats. Echocardiography 2004; 21: 417 –422.
dc.identifier.citedreferenceO’Brien WD Jr, Simpson DG, Frizzell LA, Zachary JF. Superthreshold behavior of ultrasound-induced lung hemorrhage in adult rats: role of pulse repetition frequency and exposure duration revisited. J Ultrasound Med 2005; 24: 339 –348.
dc.identifier.citedreferenceFrizzell LA, O’Brien WD Jr, Zachary JF. Effect of pulse polarity and energy on ultrasound-induced lung hemorrhage in adult rats. J Acoust Soc Am 2003; 113: 2912 –2926.
dc.identifier.citedreferenceO’Brien WD Jr, Yan Y, Simpson DG, et al. Threshold estimation of ultrasound-induced lung hemorrhage in adult rabbits, and comparison of thresholds in rabbits, rats and mice. Ultrasound Med Biol 2006; 32: 1793 –1804.
dc.identifier.citedreferenceBaggs R, Penney DP, Cox C, et al. Thresholds for ultrasonically induced lung hemorrhage in neonatal swine. Ultrasound Med Biol 1996; 22: 119 –128.
dc.identifier.citedreferenceDalecki D, Child SZ, Raeman CH, Cox C, Carstensen EL. Ultrasonically induced lung hemorrhage in young swine. Ultrasound Med Biol 1997; 23: 777 –781.
dc.identifier.citedreferenceO’Brien WD Jr, Simpson DG, Ho MH, Miller RJ, Frizzell LA, Zachary JF. Superthreshold behavior and threshold estimation of ultrasound-induced lung hemorrhage in pigs: role of age dependency. IEEE Trans Ultrason Ferroelectr Freq Control 2003; 50: 153 –169.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.