Show simple item record

Adaptive measurements of urban runoff quality

dc.contributor.authorWong, Brandon P.
dc.contributor.authorKerkez, Branko
dc.date.accessioned2017-01-10T19:08:32Z
dc.date.available2018-01-08T19:47:53Zen
dc.date.issued2016-11
dc.identifier.citationWong, Brandon P.; Kerkez, Branko (2016). "Adaptive measurements of urban runoff quality." Water Resources Research 52(11): 8986-9000.
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/2027.42/135503
dc.description.abstractAn approach to adaptively measure runoff water quality dynamics is introduced, focusing specifically on characterizing the timing and magnitude of urban pollutographs. Rather than relying on a static schedule or flow‐weighted sampling, which can miss important water quality dynamics if parameterized inadequately, novel Internet‐enabled sensor nodes are used to autonomously adapt their measurement frequency to real‐time weather forecasts and hydrologic conditions. This dynamic approach has the potential to significantly improve the use of constrained experimental resources, such as automated grab samplers, which continue to provide a strong alternative to sampling water quality dynamics when in situ sensors are not available. Compared to conventional flow‐weighted or time‐weighted sampling schemes, which rely on preset thresholds, a major benefit of the approach is the ability to dynamically adapt to features of an underlying hydrologic signal. A 28 km2 urban watershed was studied to characterize concentrations of total suspended solids (TSS) and total phosphorus. Water quality samples were autonomously triggered in response to features in the underlying hydrograph and real‐time weather forecasts. The study watershed did not exhibit a strong first flush and intraevent concentration variability was driven by flow acceleration, wherein the largest loadings of TSS and total phosphorus corresponded with the steepest rising limbs of the storm hydrograph. The scalability of the proposed method is discussed in the context of larger sensor network deployments, as well the potential to improving control of urban water quality.Key PointsAn Internet‐enabled sensor node autonomously adapts to weather forecasts and hydrograph features to collect water quality samplesFirst flush was not observed and peak loadings were primarily driven by erosion and flashinessCompared to present methods, our framework significantly reduces manpower and resource requirements in the study of water quality dynamics
dc.publisherWiley Periodicals, Inc.
dc.publisherIsl. Press
dc.subject.otherautomated sampling
dc.subject.otherurban stream
dc.subject.otherstorm water
dc.subject.othersensors
dc.subject.otherreal‐time measurements
dc.subject.otheradaptive sampling
dc.subject.otherfirst flush
dc.subject.othernutrients
dc.titleAdaptive measurements of urban runoff quality
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135503/1/wrcr22370.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135503/2/wrcr22370_am.pdf
dc.identifier.doi10.1002/2015WR018013
dc.identifier.sourceWater Resources Research
dc.identifier.citedreferenceQuigley, M., and C. Brown ( 2015 ), Transforming our cities: High‐performance green infrastructure, Water Intel. Online, 14, 9781780406732.
dc.identifier.citedreferenceOcampo‐Martinez, C., V. Puig, G. Cembrano, and J. Quevedo ( 2013 ), Application of predictive control strategies to the management of complex networks in the urban water cycle [applications of control], IEEE Control Syst., 33 ( 1 ), 15 – 41.
dc.identifier.citedreferenceOliveira, L. M., and J. J. Rodrigues ( 2011 ), Wireless sensor networks: A survey on environmental monitoring, J. Commun., 6 ( 2 ), 143 – 151.
dc.identifier.citedreferencePadowski, J. C., and J. W. Jawitz ( 2012 ), Water availability and vulnerability of 225 large cities in the United States, Water Resour. Res., 48, W12529, doi: 10.1029/2012WR012335.
dc.identifier.citedreferencePaul, M. J., and J. L. Meyer ( 2001 ), Streams in the urban landscape, Annu. Rev. Ecol. Syst., 32, 333 – 365.
dc.identifier.citedreferencePellerin, B. A., B. D. Downing, C. Kendall, R. A. Dahlgren, T. E. Kraus, J. Saraceno, R. G. Spencer, and B. A. Bergamaschi ( 2009 ), Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an in situ optical nitrate sensor and dual nitrate isotopes, Freshwater Biol., 54 ( 2 ), 376 – 387.
dc.identifier.citedreferenceHarmel, R., R. Slade, and R. Haney ( 2010 ), Impact of sampling techniques on measured stormwater quality data for small streams, J. Environ. Qual., 39 ( 5 ), 1734 – 1742.
dc.identifier.citedreferenceRawat, P., K. D. Singh, H. Chaouchi, and J. M. Bonnin ( 2014 ), Wireless sensor networks: A survey on recent developments and potential synergies, J. Supercomput., 68 ( 1 ), 1 – 48.
dc.identifier.citedreferenceRees, P., S. Long, R. Baker, D. Bordeau, and R. Pei ( 2006 ), Development of Event‐Based Pathogen Monitoring Strategies for Watersheds, Am. Water Works Assoc., Denver, Colo.
dc.identifier.citedreferenceReeves, J., J. Chen, X. L. Wang, R. Lund, and Q. Q. Lu ( 2007 ), A review and comparison of changepoint detection techniques for climate data, J. Appl. Meteorol. Climatol., 46 ( 6 ), 900 – 915.
dc.identifier.citedreferenceRowny, J. G., and J. R. Stewart ( 2012 ), Characterization of nonpoint source microbial contamination in an urbanizing watershed serving as a municipal water supply, Water Res., 46 ( 18 ), 6143 – 6153.
dc.identifier.citedreferenceRoy‐Poirier, A., P. Champagne, and Y. Filion ( 2010 ), Review of bioretention system research and design: Past, present, and future, J. Environ. Eng., 136 ( 9 ), 878 – 889.
dc.identifier.citedreferenceRucinski, D. K., D. Beletsky, J. V. DePinto, D. J. Schwab, and D. Scavia ( 2010 ), A simple 1‐dimensional, climate based dissolved oxygen model for the central basin of Lake Erie, J. Great Lakes Res., 36 ( 3 ), 465 – 76.
dc.identifier.citedreferenceRügner, H., M. Schwientek, B. Beckingham, B. Kuch, and P. Grathwohl ( 2013 ), Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments, Environ. Earth Sci., 69 ( 2 ), 373 – 380.
dc.identifier.citedreferenceSansalone, J. J., and C. M. Cristina ( 2004 ), First flush concepts for suspended and dissolved solids in small impervious watersheds, J. Environ. Eng., 130 ( 11 ), 1301 – 1314.
dc.identifier.citedreferenceSingh, A., R. Nowak, and P. Ramanathan ( 2006 ), Active learning for adaptive mobile sensing networks, in Proceedings of the 5th International Conference on Information Processing in Sensor Networks, 60 pp., ACM Press, New York.
dc.identifier.citedreferenceTartakovsky, A., I. Nikiforov, and M. Basseville ( 2014 ), Sequential Analysis: Hypothesis Testing and Changepoint Detection, CRC Press, Boca Raton, Fla.
dc.identifier.citedreferenceTiefenthaler, L., K. Schiff, and M. Leecaster ( 2000 ), Temporal variability patterns of stormwater concentrations, in Urban Stormwater Runoff, Southern California Coastal Water Research Project Annual Report, pp. 28–44, Southern California Coastal Water Research Project, Westminster, Calif.
dc.identifier.citedreferenceUSEPA ( 1979 ), Methods for Chemical Analysis of Water and Wastes, Cincinnati, Ohio.
dc.identifier.citedreferenceWagner, R. J., R.W. Boulger Jr., C. J. Oblinger, and B. A. Smith ( 2006 ), Guidelines and Standard Procedures for Continuous Water‐Quality Monitors: Station Operation, Record Computation, and Data Reporting, U.S. Geological Survey, Reston, Va.
dc.identifier.citedreferenceWalsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman, and R. P. Morgan ( 2005 ), The urban stream syndrome: Current knowledge and the search for a cure, J. North Am. Benthol. Soc., 24 ( 3 ), 706 – 723.
dc.identifier.citedreferenceWise, S. ( 2008 ), Green infrastructure rising, Planning, 74 ( 8 ), 14 – 19.
dc.identifier.citedreferenceWong, B. P., Y. Zhao, and B. Kerkez ( 2014a ), A web service‐based architecture for real‐time hydrologic sensor networks, Abstract IN23E-04 presented at 2014 Fall Meeting, AGU, San Francisco, Calif.
dc.identifier.citedreferenceWong, B. P., and B. Kerkez ( 2014b ), Adaptive, decentralized, and real‐time sampling strategies for resource constrained hydraulic and hydrologic sensor networks, paper presented at HIC 2014 – 11th International Conference on Hydroinformatics, HIC, New York.
dc.identifier.citedreferenceZhang, Y., N. Meratnia, and P. Havinga ( 2010 ), Outlier detection techniques for wireless sensor networks: A survey, IEEE Commun. Surv. Tutorials, 12 ( 2 ), 159 – 170.
dc.identifier.citedreferenceHarmel, R., R. Cooper, R. Slade, R. Haney, and J. Arnold ( 2006 ), Cumulative uncertainty in measured streamflow and water quality data for small watersheds, Trans. Am. Soc. Agric. Eng., 49 ( 3 ), 689.
dc.identifier.citedreferenceAkyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Cayirci ( 2002 ), Wireless sensor networks: A survey, Comput. Networks, 38 ( 4 ), 393 – 422.
dc.identifier.citedreferenceAnderson, C. W., and S. Rounds ( 2010 ), Use of continuous monitors and autosamplers to predict unmeasured water‐quality constituents in tributaries of the Tualatin River, Oregon, 58 pp., U.S. Geol. Surv. Sci. Invest. Rep., 2010‐5008.
dc.identifier.citedreferenceBach, P. M., D. T., McCarthy, and A. Deletic ( 2010 ), Redefining the stormwater first flush phenomenon, Water Res., 44 ( 8 ), 2487 – 2498.
dc.identifier.citedreferenceBaker, D. B., R. P. Richards, T. T. Loftus, and J. W. Kramer ( 2004 ), A new flashiness index: Characteristics and applications to midwestern rivers and streams, J. Am. Water Resour. Assoc., 40 ( 2 ), 503 – 522.
dc.identifier.citedreferenceBarbosa, A., J. Fernandes, and L. David ( 2012 ), Key issues for sustainable urban stormwater management, Water Res., 46 ( 20 ), 6787 – 6798.
dc.identifier.citedreferenceBarrett, M. E. ( 2005 ), Performance comparison of structural stormwater best management practices, Water Environ. Res., 77 ( 1 ), 78 – 86.
dc.identifier.citedreferenceBeck, H. J., and G. F. Birch ( 2012 ), Metals, nutrients and total suspended solids discharged during different flow conditions in highly urbanised catchments, Environ. Monit. Assess., 184 ( 2 ), 637 – 653.
dc.identifier.citedreferenceBenedict, M. A., and E. T. McMahon ( 2006 ), Green Infrastructure, Isl. Press, Washington, D. C.
dc.identifier.citedreferenceBertrand‐Krajewski, J., G. Chebbo, and A. Saget ( 1998 ), Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon, Water Res., 32 ( 8 ), 2341 – 2356.
dc.identifier.citedreferenceBooth, D. B., and C. R. Jackson ( 1997 ), Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation, J. Am. Water Resour. Assoc., 33 ( 5 ), 1077 – 1090.
dc.identifier.citedreferenceCharacklis, G. W., and M. R. Wiesner ( 1997 ), Particles, metals, and water quality in runoff from large urban watershed, J. Environ. Eng., 123 ( 8 ), 753 – 759.
dc.identifier.citedreferenceCorke, P., T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore ( 2010 ), Environmental wireless sensor networks, Proc. IEEE, 98 ( 11 ), 1903 – 1917.
dc.identifier.citedreferenceDeletic, A. ( 1998 ), The first flush load of urban surface runoff, Water Res., 32 ( 8 ), 2462 – 2470.
dc.identifier.citedreferenceDolan, D. M., and K. P. McGunagle ( 2005 ), Lake Erie total phosphorus loading analysis and update: 1996–2002, J. Great Lakes Res., 31, 11 – 22.
dc.identifier.citedreferenceEdwards, W. J., J. D. Conroy, and D. A. Culver ( 2005 ), Hypolimnetic oxygen depletion dynamics in the central basin of Lake Erie, J. Great Lakes Res., 31, 262 – 271.
dc.identifier.citedreferenceEleria, A., and R. M. Vogel ( 2005 ), Predicting Fecal Coliform Bacteria Levels in the Charles River, Massachusetts, USA, J. Am. Water Resour. Assoc., 41, 1195 – 1209.
dc.identifier.citedreferenceEllison, M. E., and M. T. Brett ( 2006 ), Particulate phosphorus bioavailability as a function of stream flow and land cover, Water Res., 40 ( 6 ), 1258 – 1268.
dc.identifier.citedreferenceFletcher, T. D., and A. Deletic ( 2007 ), Statistical observations of a stormwater monitoring programme: lessons for the estimation of pollutant loads, paper presented at 6th international conference on sustainable techniques and strategies in urban water management, NOVATECH, Lyons, France.
dc.identifier.citedreferenceGall, H. E., C. T. Jafvert, and B. Jenkinson ( 2010 ), Integrating hydrograph modeling with real‐time flow monitoring to generate hydrograph‐specific sampling schemes, J. Hydrol., 393 ( 3), 331.
dc.identifier.citedreferenceGnecco, I., C. Berretta, L. Lanza, and P. La Barbera ( 2005 ), Storm water pollution in the urban environment of Genoa, Italy, Atmos. Res., 77 ( 1 ), 60 – 73.
dc.identifier.citedreferenceGrayson, R., B. L. Finlayson, C. Gippel, and B. Hart ( 1996 ), The potential of field turbidity measurements for the computation of total phosphorus and suspended solids loads, J. Environ. Manage., 47 ( 3 ), 257 – 267.
dc.identifier.citedreferenceHarmel, R., K. King, and R. Slade ( 2003 ), Automated storm water sampling on small watersheds, Appl. Eng. Agric., 19 ( 6 ), 667 – 674.
dc.identifier.citedreferenceHart, J. K., and K. Martinez ( 2006 ), Environmental sensor networks: A revolution in the earth system science?, Earth Sci. Rev., 78 ( 3 ), 177 – 191.
dc.identifier.citedreferenceHastie, T., R. Tibshirani, and J. Friedman ( 2009 ), The Elements of Statistical Learning, Springer, New York.
dc.identifier.citedreferenceHathaway, J. M., and W. F. Hunt ( 2011 ), Evaluation of first flush for indicator bacteria and total suspended solids in urban stormwater runoff, Water Air Soil Pollut., 217 ( 1–4 ), 135 – 147.
dc.identifier.citedreferenceHawley, R., and G. Vietz ( 2016 ), Addressing the urban stream disturbance regime, Freshwater Sci., 35, 278 – 292.
dc.identifier.citedreferenceHensley, R. T., M. J. Cohen, and L. V. Korhnak ( 2015 ), Hydraulic effects on nitrogen removal in a tidal spring‐fed river, Water Resour. Res., 51, 1443 – 1456, doi: 10.1002/2014WR016178.
dc.identifier.citedreferenceHill, D., B. Kerkez, A. Rasekh, A. Ostfeld, B. Minsker, and M. K. Banks ( 2014 ), Sensing and cyberinfrastructure for smarter water management: The promise and challenge of ubiquity, J. Water Resour. Plann. Manage., 140 ( 7 ), 01814002.
dc.identifier.citedreferenceHorowitz, A. J. ( 2009 ), Monitoring suspended sediments and associated chemical constituents in urban environments: Lessons from the city of Atlanta, Georgia, USA Water Quality Monitoring Program, J. Soil Sediment, 9 ( 4 ), 342 – 363.
dc.identifier.citedreferenceHorsburgh, J. S., A. S. Jones, D. K. Stevens, D. G. Tarboton, and N. O. Mesner ( 2010 ), A sensor network for high frequency estimation of water quality constituent fluxes using surrogates, Environ. Modell. Software, 25 ( 9 ), 1031 – 1044.
dc.identifier.citedreferenceKerkez, B., C. Gruden, M. J. Lewis, L. Montestruque, M. Quigley, B. P. Wong, A. Bedig, R. Kertesz, T. Braun, and O. Cadwalader ( 2016 ), Smarter stormwater systems, Environ. Sci. Technol., 50, 7267 – 7273.
dc.identifier.citedreferenceKrause, A., R. Rajagopal, A. Gupta, and C. Guestrin ( 2009 ), Simultaneous placement and scheduling of sensors, in IPSN ’09 Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, pp. 181–192, IEEE Comput. Soc., Washington, D. C.
dc.identifier.citedreferenceLangeveld, J., H. Liefting, and F. Boogaard ( 2012 ), Uncertainties of stormwater characteristics and removal rates of stormwater treatment facilities: Implications for stormwater handling. Water Res., 46 ( 20 ), 6868 – 6680.
dc.identifier.citedreferenceLee, J. H., and K. W. Bang ( 2000 ), Characterization of urban stormwater runoff, Water Res., 34 ( 6 ), 1773 – 1780.
dc.identifier.citedreferenceLeecaster, M. K., K. Schiff, and L. L. Tiefenthaler ( 2002 ), Assessment of efficient sampling designs for urban stormwater monitoring, Water Res., 36 ( 6 ), 1556 – 1564.
dc.identifier.citedreferenceLi, L., C. Yin, Q. He, and L. Kong ( 2007 ), First flush of storm runoff pollution from an urban catchment in China, J. Environ. Sci., 19 ( 3 ), 295 – 299.
dc.identifier.citedreferenceMcCarthy, D., J. Hathaway, W. Hunt, and A. Deletic ( 2012 ), Intra‐event variability of Escherichia coli and total suspended solids in urban stormwater runoff, Water Res., 46 ( 20 ), 6661 – 6670.
dc.identifier.citedreferenceMétadier, M., and J. Bertrand‐Krajewski ( 2012 ), The use of long‐term on‐line turbidity measurements for the calculation of urban stormwater pollutant concentrations, loads, pollutographs and intra‐event fluxes, Water Res., 46 ( 20 ), 6836 – 6856.
dc.identifier.citedreferenceMiller, M. P., A. J. Tesoriero, P. D. Capel, B. A. Pellerin, K. E. Hyer, and D. A. Burns ( 2015 ), Quantifying watershed‐scale groundwater loading and in‐stream fate of nitrate using high‐frequency water quality data, Water Resour Res., 52, 330 – 347, doi: 10.1002/2015WR017753.
dc.identifier.citedreferenceMontestruque, L., and M. D. Lemmon ( 2015 ), Globally coordinated distributed storm water management system, in Proceedings of the 1st ACM International Workshop on Cyber‐Physical Systems for Smart Water Networks, 10 pp., ACM Press, New York.
dc.identifier.citedreferenceMontgomery, J. L., T. Harmon, C. N. Haas, R. Hooper, N. L. Clesceri, W. Graham, W. Kaiser, A. Sanderson, B. Minsker, and J. Schnoor ( 2007 ), The waters network: An integrated environmental observatory network for water research, Environ. Sci. Technol., 41 ( 19 ), 6642 – 6647.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.