Show simple item record

Human Cardiomyocytes Prior to Birth by Integrationâ Free Reprogramming of Amniotic Fluid Cells

dc.contributor.authorJiang, Guihua
dc.contributor.authorHerron, Todd J.
dc.contributor.authorDi Bernardo, Julie
dc.contributor.authorWalker, Kendal A.
dc.contributor.authorO’shea, K. Sue
dc.contributor.authorKunisaki, Shaun M.
dc.date.accessioned2017-01-10T19:08:54Z
dc.date.available2018-02-01T14:56:11Zen
dc.date.issued2016-12
dc.identifier.citationJiang, Guihua; Herron, Todd J.; Di Bernardo, Julie; Walker, Kendal A.; O’shea, K. Sue ; Kunisaki, Shaun M. (2016). "Human Cardiomyocytes Prior to Birth by Integrationâ Free Reprogramming of Amniotic Fluid Cells." STEM CELLS Translational Medicine 5(12): 1595-1606.
dc.identifier.issn2157-6564
dc.identifier.issn2157-6580
dc.identifier.urihttps://hdl.handle.net/2027.42/135525
dc.publisherWiley Periodicals, Inc.
dc.publisherAlphaMed Press
dc.subject.otherAmniotic fluid
dc.subject.otherInduced pluripotent stem cells
dc.subject.otherPluripotent stem cells
dc.subject.otherFetal stem cells
dc.subject.otherCardiac
dc.titleHuman Cardiomyocytes Prior to Birth by Integrationâ Free Reprogramming of Amniotic Fluid Cells
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumC.S. Mott Childrenâ s Hospital and Von Voigtlander Womenâ s Hospital, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.contributor.affiliationumDepartment of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.contributor.affiliationumDepartment of Internal Medicine, Cardiovascular Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.contributor.affiliationumPluripotent Stem Cell Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.contributor.affiliationumDepartment of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135525/1/Supplemental_Information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135525/2/sct320165121595.pdf
dc.identifier.doi10.5966/sctm.2016-0016
dc.identifier.sourceSTEM CELLS Translational Medicine
dc.identifier.citedreferenceOtt HC, Matthiesen TS, Goh SK et al. Perfusion-decellularized matrix: Using natureâ s platform to engineer a bioartificial heart. Nat Med. 2008; 14: 213 â 221.
dc.identifier.citedreferenceLaflamme MA, Chen KY, Naumova AV et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007; 25: 1015 â 1024.
dc.identifier.citedreferenceDe Coppi P, Bartsch G Jr, Siddiqui MM et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007; 25: 100 â 106.
dc.identifier.citedreferenceBollini S, Cheung KK, Riegler J et al. Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev. 2011; 20: 1985 â 1994.
dc.identifier.citedreferenceCunningham JJ, Ulbright TM, Pera MF et al. Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotechnol. 2012; 30: 849 â 857.
dc.identifier.citedreferenceNisbet M, Markowitz EM. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society. PLoS One. 2014; 9: e88473
dc.identifier.citedreferenceSun N, Yazawa M, Liu J et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012; 4: 130ra47
dc.identifier.citedreferenceMoretti A, Bellin M, Welling A et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010; 363: 1397 â 1409.
dc.identifier.citedreferenceKunisaki SM. Congenital anomalies: Treatment options based on amniotic fluid-derived stem cells. Organogenesis. 2012; 8: 89 â 95.
dc.identifier.citedreferenceChristoforou N, Liau B, Chakraborty S et al. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues. PLoS One. 2013; 8: e65963
dc.identifier.citedreferenceLiau B, Christoforou N, Leong KW et al. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials. 2011; 32: 9180 â 9187.
dc.identifier.citedreferenceChong JJ, Yang X, Don CW et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014; 510: 273 â 277.
dc.identifier.citedreferenceGuyette JP, Charest JM, Mills RW et al. Bioengineering human myocardium on native extracellular matrix. Circ Res. 2016; 118: 56 â 72.
dc.identifier.citedreferenceForrester JS, Price MJ, Makkar RR. Stem cell repair of infarcted myocardium: An overview for clinicians. Circulation. 2003; 108: 1139 â 1145.
dc.identifier.citedreferenceMishra R, Vijayan K, Colletti EJ et al. Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation. 2011; 123: 364 â 373.
dc.identifier.citedreferenceGaber N, Gagliardi M, Patel P et al. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation. Am J Pathol. 2013; 183: 720 â 734.
dc.identifier.citedreferenceJiang Y, Habibollah S, Tilgner K et al. An induced pluripotent stem cell model of hypoplastic left heart syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes. Stem Cells Translational Medicine. 2014; 3: 416 â 423.
dc.identifier.citedreferenceTheis JL, Hrstka SC, Evans JM et al. Compound heterozygous NOTCH1 mutations underlie impaired cardiogenesis in a patient with hypoplastic left heart syndrome. Hum Genet. 2015; 134: 1003 â 1011.
dc.identifier.citedreferenceKobayashi J, Yoshida M, Tarui S et al. Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. PLoS One. 2014; 9: e102796
dc.identifier.citedreferenceEsposito G, Butler TL, Blue GM et al. Somatic mutations in NKX2â 5, GATA4, and HAND1 are not a common cause of tetralogy of Fallot or hypoplastic left heart. Am J Med Genet A. 2011; 155A: 2416 â 2421.
dc.identifier.citedreferenceBani D, Formigli L, Gherghiceanu M et al. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010; 14: 2531 â 2538.
dc.identifier.citedreferenceIn â t Anker PS, Scherjon SA, Kleijburg-van der Keur C et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003; 102: 1548 â 1549.
dc.identifier.citedreferenceEvangelista M, Soncini M, Parolini O. Placenta-derived stem cells: New hope for cell therapy?. Cytotechnology. 2008; 58: 33 â 42.
dc.identifier.citedreferenceLee JM, Jung J, Lee HJ et al. Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol. 2012; 13: 219 â 224.
dc.identifier.citedreferenceConnell JP, Ruano R, Jacot JG. Amniotic fluid-derived stem cells demonstrate limited cardiac differentiation following small molecule-based modulation of Wnt signaling pathway. Biomed Mater. 2015; 10: 034103
dc.identifier.citedreferenceMoschidou D, Mukherjee S, Blundell MP et al. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther. 2012; 20: 1953 â 1967.
dc.identifier.citedreferenceDiecke S, Wu JC. Pushing the reset button: Chemical-induced conversion of amniotic fluid stem cells into a pluripotent state. Mol Ther. 2012; 20: 1839 â 1841.
dc.identifier.citedreferenceZia S, Toelen J, Mori da Cunha M et al. Routine clonal expansion of mesenchymal stem cells derived from amniotic fluid for perinatal applications. Prenat Diagn. 2013; 33: 921 â 928.
dc.identifier.citedreferenceMoschidou D, Mukherjee S, Blundell MP et al. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells Dev. 2013; 22: 444 â 458.
dc.identifier.citedreferenceOster ME, Lee KA, Honein MA et al. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics. 2013; 131: e1502 â e1508.
dc.identifier.citedreferenceQuartermain MD, Pasquali SK, Hill KD et al. Variation in prenatal diagnosis of congenital heart disease in infants. Pediatrics. 2015; 136: e378 â e385.
dc.identifier.citedreferenceFeinstein JA, Benson DW, Dubin AM et al. Hypoplastic left heart syndrome: Current considerations and expectations. J Am Coll Cardiol. 2012; 59 Suppl S1 â S42.
dc.identifier.citedreferenceHaase A, Olmer R, Schwanke K et al. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell. 2009; 5: 434 â 441.
dc.identifier.citedreferenceShaw SW, David AL, De Coppi P. Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol. 2011; 23: 109 â 116.
dc.identifier.citedreferenceHuang GY, Xie LJ, Linask KL et al. Evaluating the role of connexin43 in congenital heart disease: Screening for mutations in patients with outflow tract anomalies and the analysis of knock-in mouse models. J Cardiovasc Dis Res. 2011; 2: 206 â 212.
dc.identifier.citedreferenceKunisaki SM, Armant M, Kao GS et al. Tissue engineering from human mesenchymal amniocytes: A prelude to clinical trials. J Pediatr Surg. 2007; 42: 974 â 980; discussion 979â 980.
dc.identifier.citedreferenceDominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8: 315 â 317.
dc.identifier.citedreferenceBentley JK, Popova AP, Bozyk PD et al. Ovalbumin sensitization and challenge increases the number of lung cells possessing a mesenchymal stromal cell phenotype. Respir Res. 2010; 11: 127
dc.identifier.citedreferenceJiang G, Di Bernardo J, Maiden MM et al. Human transgene-free amniotic-fluid-derived induced pluripotent stem cells for autologous cell therapy. Stem Cells Dev. 2014; 23: 2613 â 2625.
dc.identifier.citedreferenceItskovitz-Eldor J, Schuldiner M, Karsenti D et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000; 6: 88 â 95.
dc.identifier.citedreferenceZhang J, Klos M, Wilson GF et al. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: The matrix sandwich method. Circ Res. 2012; 111: 1125 â 1136.
dc.identifier.citedreferenceKarakikes I, Senyei GD, Hansen J et al. Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Translational Medicine. 2014; 3: 18 â 31.
dc.identifier.citedreferenceDubois NC, Craft AM, Sharma P et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011; 29: 1011 â 1018.
dc.identifier.citedreferenceLivak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25: 402 â 408.
dc.identifier.citedreferenceBizy A, Guerrero-Serna G, Hu B et al. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Res. 2013; 11: 1335 â 1347.
dc.identifier.citedreferenceHerron TJ, Lee P, Jalife J. Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res. 2012; 110: 609 â 623.
dc.identifier.citedreferenceLee P, Klos M, Bollensdorff C et al. Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circ Res. 2012; 110: 1556 â 1563.
dc.identifier.citedreferenceYe L, Chang JC, Lin C et al. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci USA. 2009; 106: 9826 â 9830.
dc.identifier.citedreferenceGalende E, Karakikes I, Edelmann L et al. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram. 2010; 12: 117 â 125.
dc.identifier.citedreferenceGinsberg M, James D, Ding BS et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell. 2012; 151: 559 â 575.
dc.identifier.citedreferenceAnchan RM, Quaas P, Gerami-Naini B et al. Amniocytes can serve a dual function as a source of iPS cells and feeder layers. Hum Mol Genet. 2011; 20: 962 â 974.
dc.identifier.citedreferenceGuan X, Delo DM, Atala A et al. In vitro cardiomyogenic potential of human amniotic fluid stem cells. J Tissue Eng Regen Med. 2011; 5: 220 â 228.
dc.identifier.citedreferenceHwang HS, Kryshtal DO, Feaster TK et al. Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. J Mol Cell Cardiol. 2015; 85: 79 â 88.
dc.identifier.citedreferenceBurridge PW, Matsa E, Shukla P et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014; 11: 855 â 860.
dc.identifier.citedreferenceJayawardena TM, Egemnazarov B, Finch EA et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012; 110: 1465 â 1473.
dc.identifier.citedreferenceFu JD, Stone NR, Liu L et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep. 2013; 1: 235 â 247.
dc.identifier.citedreferenceSchmidt D, Mol A, Breymann C et al. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation. 2006; 114 Suppl I125 â I131.
dc.identifier.citedreferenceKaviani A, Guleserian K, Perry TE et al. Fetal tissue engineering from amniotic fluid. J Am Coll Surg. 2003; 196: 592 â 597.
dc.identifier.citedreferenceMaherali N, Hochedlinger K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008; 3: 595 â 605.
dc.identifier.citedreferenceStoll C, Garne E, Clementi M. Evaluation of prenatal diagnosis of associated congenital heart diseases by fetal ultrasonographic examination in Europe. Prenat Diagn. 2001; 21: 243 â 252.
dc.identifier.citedreferenceBrace RA, Wolf EJ. Normal amniotic fluid volume changes throughout pregnancy. Am J Obstet Gynecol. 1989; 161: 382 â 388.
dc.identifier.citedreferenceSong MS, Hu A, Dyamenahalli U et al. Extracardiac lesions and chromosomal abnormalities associated with major fetal heart defects: comparison of intrauterine, postnatal and postmortem diagnoses. Ultrasound Obstet Gynecol. 2009; 33: 552 â 559.
dc.identifier.citedreferenceInâ t Anker PS, Scherjon SA, Kleijburg-van der Keur C et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004; 22: 1338 â 1345.
dc.identifier.citedreferenceFiles MD, Boucek RJ. â Shovel-readyâ applications of stem cell advances for pediatric heart disease. Curr Opin Pediatr. 2012; 24: 577 â 583.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.