Show simple item record

Potential Use of Ultrasound Speckle Tracking for Motion Management During Radiotherapy

dc.contributor.authorRubin, Jonathan M.
dc.contributor.authorFeng, Mary
dc.contributor.authorHadley, Scott W.
dc.contributor.authorFowlkes, J. Brian
dc.contributor.authorHamilton, James D.
dc.date.accessioned2017-01-10T19:09:29Z
dc.date.available2017-01-10T19:09:29Z
dc.date.issued2012-03
dc.identifier.citationRubin, Jonathan M.; Feng, Mary; Hadley, Scott W.; Fowlkes, J. Brian; Hamilton, James D. (2012). "Potential Use of Ultrasound Speckle Tracking for Motion Management During Radiotherapy." Journal of Ultrasound in Medicine 31(3): 469-481.
dc.identifier.issn0278-4297
dc.identifier.issn1550-9613
dc.identifier.urihttps://hdl.handle.net/2027.42/135564
dc.publisherAmerican Institute of Ultrasound in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherradiation oncology
dc.subject.otherultrasound
dc.subject.otherultrasound speckle
dc.subject.otherultrasound speckle tracking
dc.subject.othertissue motion
dc.titlePotential Use of Ultrasound Speckle Tracking for Motion Management During Radiotherapy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiology, University of Michigan, Ann Arbor, Michigan USA
dc.contributor.affiliationumDepartment of Radiation Oncology, University of Michigan, Ann Arbor, Michigan USA
dc.contributor.affiliationotherEpsilon Imaging, Ann Arbor, Michigan USA
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135564/1/jum2012313469.pdf
dc.identifier.doi10.7863/jum.2012.31.3.469
dc.identifier.sourceJournal of Ultrasound in Medicine
dc.identifier.citedreferenceBrock KK, Hollister SJ, Dawson LA, Balter JM. Technical note: creating a four-dimensional model of the liver using finite element analysis. Med Phys 2002; 29: 1403 – 1405.
dc.identifier.citedreferenceLubinski MA, Emelianov SY, O’Donnell M. Speckle tracking methods for ultrasonic elasticity imaging using short time correlation. IEEE Trans Ultrason Ferroelectr Freq Control 1999; 46: 82 – 96.
dc.identifier.citedreferenceO’Donnell M, Emelianov SY, Skovoroda AR, Lubinski MA, Weitzel WF, Wiggins RC. Quantitative elasticity imaging. Proc IEEE Ultrason Symp 1993; 2: 893 – 903.
dc.identifier.citedreferenceOphir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111 – 134.
dc.identifier.citedreferenceKonofagou E, Ophir J. A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues. Ultrasound Med Biol 1998; 24: 1183 – 1199.
dc.identifier.citedreferenceMaurice RL, Bertrand M. Lagrangian speckle model and tissue-motion estimation: theory. IEEE Trans Med Imaging 1999; 18: 593 – 603.
dc.identifier.citedreferenceTrahey GE, Allison JW, von Ramm OT. Angle-independent ultrasonic detection of blood flow. IEEE Trans Biomed Eng 1987; 34: 965 – 967.
dc.identifier.citedreferenceWagner RF, Smith SW, Sandrik JM, Lopez H. Statistics of speckle in ultrasound B-scans. IEEE Trans Son Ultrason 1983; 30: 156 – 163.
dc.identifier.citedreferenceD’Hooge J, Heimdal A, Jamal F. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 2000; 1: 154 – 170.
dc.identifier.citedreferenceWeng L, Tirumalai AP, Lowery CM. US extended-field-of-view imaging technology. Radiology 1997; 203: 877 – 880.
dc.identifier.citedreferenceHsu A, Miller NR, Evans PM, Bamber JC, Webb S. Feasibility of using ultrasound for real-time tracking during radiotherapy. Med Phys 2005; 32: 1500 – 1512.
dc.identifier.citedreferenceHarris EJ, Miller NR, Bamber JC, Evans PM, Symonds-Tayler JR. Performance of ultrasound-based measurement of 3D displacement using a curvilinear probe for organ motion tracking. Phys Med Biol 2007; 52: 5683 – 5703.
dc.identifier.citedreferenceHarris EJ, Miller NR, Bamber JC, Symonds-Tayler JR, Evans PM. Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound. Phys Med Biol 2010; 55: 3363 – 3380.
dc.identifier.citedreferenceJacso F, Kouznetsov A, Smith WL. Development and evaluation of an ultrasound-guided tracking and gating system for hepatic radiotherapy. Med Phys 2009; 36: 5633 – 5640.
dc.identifier.citedreferenceAshraf M, Carlson M, Newey C. Ultrasound speckle tracking system using radiofrequency data for simultaneous computation of strain and strain rate: validation against sonomicrometry [abstract]. Circulation 2010; 122 (suppl): A9116.
dc.identifier.citedreferenceBrock KK, McShan DL, Ten Haken RK, Hollister SJ, Dawson LA, Balter JM. Inclusion of organ deformation in dose calculations. Med Phys 2003; 30: 290 – 295.
dc.identifier.citedreferenceBrock KM, Balter JM, Dawson LA, Kessler ML, Meyer CR. Automated generation of a four-dimensional model of the liver using warping and mutual information. Med Phys 2003; 30: 1128 – 1133.
dc.identifier.citedreferenceRohlfing T, Maurer CR Jr, O’Dell WG, Zhong J. Modeling liver motion and deformation during the respiratory cycle using intensity-based non-rigid registration of gated MR images. Med Phys 2004; 31: 427 – 432.
dc.identifier.citedreferenceBalter JM, Sandler HM, Lam K, Bree RL, Lichter AS, Ten Haken RK. Measurement of prostate movement over the course of routine radiotherapy using implanted markers. Int J Radiat Oncol Biol Phys 1995; 31: 113 – 118.
dc.identifier.citedreferenceLangen KM, Willoughby TR, Meeks SL. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 2008; 71: 1084 – 1090.
dc.identifier.citedreferenceKroger K, Massalha K, Dobonici G, Rudofsky G. SieScape: a new sonographic dimension with fictive images. Ultrasound Med Biol 1998; 24: 1125 – 1129.
dc.identifier.citedreferenceTrahey GE, Smith SW, von Ramm OT. Speckle pattern correlation with lateral aperture translation: experimental results and implications for spatial compounding. IEEE Trans Ultrason Ferroelectr Freq Control 1986; 33: 257 – 264.
dc.identifier.citedreferenceTokuda J, Schmitt M, Sun Y. Lung motion and volume measurement by dynamic 3D MRI using a 128-channel receiver coil. Acad Radiol 2009; 16: 22 – 27.
dc.identifier.citedreferenceDieterich S, Tang J, Rodgers J, Cleary K. Skin respiratory motion tracking for stereotactic radiosurgery using the CyberKnife. Int Congress Ser 2003; 1256: 130 – 136.
dc.identifier.citedreferenceLubinski MA, Emelianov SY, O’Donnell M. Adaptive strain estimation using retrospective processing. IEEE Trans Ultrason Ferroelectr Freq Control 1999; 46: 97 – 107.
dc.identifier.citedreferenceBooi RC, Carson PL, O’Donnell M, Richards MS, Rubin JM. Diagnosing cysts with correlation coefficient images from 2-dimensional freehand elastography. J Ultrasound Med 2007; 26: 1201 – 1207.
dc.identifier.citedreferenceBooi RC, Carson PL, O’Donnell M, Roubidoux MA, Hall AL, Rubin JM. Characterization of cysts using differential correlation coefficient values from two-dimensional breast elastography: preliminary study. Ultrasound Med Biol 2008; 34: 12 – 21.
dc.identifier.citedreferenceFeng M, Balter JM, Normolle D. Characterization of pancreatic tumor motion using cine MRI: surrogates for tumor position should be used with caution. Int J Radiat Oncol Biol Phys 2009; 74: 884 – 891.
dc.identifier.citedreferenceWeiss E, Wijesooriya K, Dill SV, Keall PJ. Tumor and normal tissue motion in the thorax during respiration: analysis of volumetric and positional variations using 4D CT. Int J Radiat Oncol Biol Phys 2007; 67: 296 – 307.
dc.identifier.citedreferenceCase RB, Moseley DJ, Sonke JJ. Interfraction and intrafraction changes in amplitude of breathing motion in stereotactic liver radiotherapy. Int J Radiat Oncol Biol Phys 2010; 77: 918 – 925.
dc.identifier.citedreferenceNoel C, Parikh PJ, Roy M. Prediction of intrafraction prostate motion: accuracy of pre- and post-treatment imaging and intermittent imaging. Int J Radiat Oncol Biol Phys 2009; 73: 692 – 698.
dc.identifier.citedreferenceJin J-Y, Ajlouni M, Chen Q, Yin F-F, Movsas B. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy. Radiother Oncol 2006; 78: 177 – 184.
dc.identifier.citedreferenceLiu HH, Balter PA, Tutt T. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 2007; 68: 531 – 540.
dc.identifier.citedreferenceVedam SS, Keall PJ, Kini VR, Mohan R. Determining parameters for respiration-gated radiotherapy. Med Phys 2001; 28: 2139 – 2146.
dc.identifier.citedreferenceHunjan S, Starkschall G, Prado K, Dong L, Balter P. Lack of correlation between external fiducial positions and internal tumor positions during breath-hold CT. Int J Radiat Oncol Biol Phys 2010; 76: 1586 – 1591.
dc.identifier.citedreferenceKoch N, Liu HH, Starkschall G. Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI, part I: correlating internal lung motion with skin fiducial motion. Int J Radiat Oncol Biol Phys 2004; 60: 1459 – 1472.
dc.identifier.citedreferenceOzhasoglu C, Murphy MJ. Issues in respiratory motion compensation during external-beam radiotherapy. Int J Radiat Oncol Biol Phys 2002; 52: 1389 – 1399.
dc.identifier.citedreferenceBalter JM, Brock KK, Litzenberg DW. Daily targeting of intrahepatic tumors for radiotherapy. Int J Radiat Oncol Biol Phys 2002; 52: 266 – 271.
dc.identifier.citedreferenceChang DT, Schellenberg D, Shen J. Stereotactic radiotherapy for un-resectable adenocarcinoma of the pancreas. Cancer 2009; 115: 665 – 672.
dc.identifier.citedreferenceShirato H, Shimizu S, Kitamura K. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 2000; 48: 435 – 442.
dc.identifier.citedreferenceChen EJ, Adler RS, Carson PL, Jenkins WK, O’Brien WD Jr. Ultrasound tissue displacement imaging with application to breast cancer. Ultrasound Med Biol 1995; 21: 1153 – 1162.
dc.identifier.citedreferenceChen J-F, Fowlkes JB, Carson PL, Rubin JM. Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test. Int J Imaging Syst Technol 1997; 8: 38 – 44.
dc.identifier.citedreferenceChen X, Xie H, Erkamp R. 3-D correlation-based speckle tracking. Ultrason Imaging 2004; 27: 21 – 36.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.