Show simple item record

Backbone‐Degradable Polymers Prepared by Chemical Vapor Deposition

dc.contributor.authorXie, Fan
dc.contributor.authorDeng, Xiaopei
dc.contributor.authorKratzer, Domenic
dc.contributor.authorCheng, Kenneth C. K.
dc.contributor.authorFriedmann, Christian
dc.contributor.authorQi, Shuhua
dc.contributor.authorSolorio, Luis
dc.contributor.authorLahann, Joerg
dc.date.accessioned2017-01-10T19:09:32Z
dc.date.available2018-03-01T16:43:51Zen
dc.date.issued2017-01-02
dc.identifier.citationXie, Fan; Deng, Xiaopei; Kratzer, Domenic; Cheng, Kenneth C. K.; Friedmann, Christian; Qi, Shuhua; Solorio, Luis; Lahann, Joerg (2017). "Backbone‐Degradable Polymers Prepared by Chemical Vapor Deposition." Angewandte Chemie 129(1): 209-213.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/135566
dc.description.abstractPolymers prepared by chemical vapor deposition (CVD) polymerization have found broad acceptance in research and industrial applications. However, their intrinsic lack of degradability has limited wider applicability in many areas, such as biomedical devices or regenerative medicine. Herein, we demonstrate, for the first time, a backbone‐degradable polymer directly synthesized via CVD. The CVD co‐polymerization of [2.2]para‐cyclophanes with cyclic ketene acetals, specifically 5,6‐benzo‐2‐methylene‐1,3‐dioxepane (BMDO), results in well‐defined, hydrolytically degradable polymers, as confirmed by FTIR spectroscopy and ellipsometry. The degradation kinetics are dependent on the ratio of ketene acetals to [2.2]para‐cyclophanes as well as the hydrophobicity of the films. These coatings address an unmet need in the biomedical polymer field, as they provide access to a wide range of reactive polymer coatings that combine interfacial multifunctionality with degradability.Verletzliches Rückgrat: Beschichtungen aus Polymeren mit abbaubarem Rückgrat wurden durch Copolymerisation mittels chemischer Dampfabscheidung erhalten. Die Beschichtungen vereinen die Möglichkeit zur mehrfachen Funktionalisierung von Grenzflächen mit einer Abbaufähigkeit, was insbesondere für biomedizinische Anwendungen von Interesse ist.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherFunktionelle Polymere
dc.subject.otherRadikalische Ringöffnungspolymerisation
dc.subject.otherCyclische Ketenacetale
dc.subject.otherCVD (chemical vapor deposition)
dc.subject.otherHydrolytischer Abbau
dc.titleBackbone‐Degradable Polymers Prepared by Chemical Vapor Deposition
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135566/1/ange201609307-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135566/2/ange201609307_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135566/3/ange201609307.pdf
dc.identifier.doi10.1002/ange.201609307
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceA. K. Bier, M. Bognitzki, J. Mogk, A. Greiner, Macromolecules 2012, 45, 1151 – 1157.
dc.identifier.citedreferenceQ. Jin, S. Maji, S. Agarwal, Polym. Chem. 2012, 3, 2785 – 2793.
dc.identifier.citedreferenceA. Takahashi, M. Palmer-Opolski, R. C. Smith, K. Walsh, Gene Ther. 2003, 10, 1471 – 1478.
dc.identifier.citedreferenceK. Rezwan, Q. Z. Chen, J. J. Blaker, A. R. Boccaccini, Biomaterials 2006, 27, 3413 – 3431.
dc.identifier.citedreferenceT. G. Kim, T. G. Park, Biotechnol. Prog. 2006, 22, 1108 – 1113.
dc.identifier.citedreferenceY.-b. Lim, S.-M. Kim, Y. Lee, W.-k. Lee, T.-g. Yang, M.-j. Lee, H. Suh, J.-S. Park, J. Am. Chem. Soc. 2001, 123, 2460 – 2461.
dc.identifier.citedreferenceW. L. Murphy, D. J. Mooney, J. Am. Chem. Soc. 2002, 124, 1910 – 1917.
dc.identifier.citedreferenceJ. M. Hsu, L. Rieth, R. A. Normann, P. Tathireddy, F. Solzbacher, IEEE Trans. Biomed. Eng. 2009, 56, 23 – 29.
dc.identifier.citedreferenceD. C. Rodger, A. J. Fong, W. Li, H. Ameri, A. K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P. R. Menon, E. Meng, J. W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun, Y.-C. Tai, Sens. Actuators B 2008, 132, 449 – 460.
dc.identifier.citedreferenceX. Deng, J. Lahann, J. Appl. Polym. Sci. 2014, 131, 1 – 9.
dc.identifier.citedreferenceH.-Y. Chen, J. Lahann, Langmuir 2010, 27, 34 – 48.
dc.identifier.citedreferenceH. Tian, Z. Tang, X. Zhuang, X. Chen, X. Jing, Prog. Polym. Sci. 2012, 37, 237 – 280.
dc.identifier.citedreferenceS. Agarwal, Polym. Chem. 2010, 1, 953 – 964.
dc.identifier.citedreferenceY. Hiraguri, Y. Tokiwa, J. Polym. Environ. 2010, 18, 116 – 121.
dc.identifier.citedreferenceF. Sanda, T. Endo, J. Polym. Sci. Part A 2001, 39, 265 – 276.
dc.identifier.citedreferenceW. J. Bailey, Z. Ni, S. R. Wu, Macromolecules 1982, 15, 711 – 714.
dc.identifier.citedreferenceH. Wickel, S. Agarwal, Macromolecules 2003, 36, 6152 – 6159.
dc.identifier.citedreferenceG. G. d’Ayala, M. Malinconico, P. Laurienzo, A. Tardy, Y. Guillaneuf, M. Lansalot, F. D’Agosto, B. Charleux, J. Polym. Sci. Part A 2014, 52, 104 – 111.
dc.identifier.citedreferenceW. J. Bailey, Z. Ni, S.-R. Wu, J. Polym. Sci. Polym. Chem. Ed. 1982, 20, 3021 – 3030.
dc.identifier.citedreferenceJ. Lahann, D. Klee, W. Pluester, H. Hoecker, Biomaterials 2001, 22, 817 – 826.
dc.identifier.citedreferenceA. Göpferich, Biomaterials 1996, 17, 103 – 114.
dc.identifier.citedreferenceF. von Burkersroda, L. Schedl, A. Göpferich, Biomaterials 2002, 23, 4221 – 4231.
dc.identifier.citedreferenceS. Banerjee, S. Mazumdar, Int. J. Anal. Chem. 2012, 40, DOI: 10.1155/2012/282574.
dc.identifier.citedreferenceR. J. Schutte, L. Xie, B. Klitzman, W. M. Reichert, Biomaterials 2009, 30, 160 – 168.
dc.identifier.citedreferenceN. W. Roehm, G. H. Rodgers, S. M. Hatfield, A. L. Glasebrook, J. Immunol. Methods 1991, 142, 257 – 265.
dc.identifier.citedreferenceH. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004 – 2021; Angew. Chem. 2001, 113, 2056 – 2075.
dc.identifier.citedreferenceH. Nandivada, H.-Y. Chen, L. Bondarenko, J. Lahann, Angew. Chem. Int. Ed. 2006, 45, 3360 – 3363; Angew. Chem. 2006, 118, 3438 – 3441.
dc.identifier.citedreferenceX. Deng, C. Friedmann, J. Lahann, Angew. Chem. Int. Ed. 2011, 50, 6522 – 6526; Angew. Chem. 2011, 123, 6652 – 6656.
dc.identifier.citedreferenceJ. L. Wilbur, A. Kumar, E. Kim, G. M. Whitesides, Adv. Mater. 1994, 6, 600 – 604.
dc.identifier.citedreferenceH. Y. Chen, J. Lahann, Adv. Mater. 2007, 19, 3801 – 3808.
dc.identifier.citedreferenceD. Grafahrend, K.-H. Heffels, M. V. Beer, P. Gasteier, M. Möller, G. Boehm, P. D. Dalton, J. Groll, Nat. Mater. 2011, 10, 67 – 73.
dc.identifier.citedreferenceB. Jeong, Y. H. Bae, D. S. Lee, S. W. Kim, Nature 1997, 388, 860 – 862.
dc.identifier.citedreferenceM. Vert, Biomacromolecules 2005, 6, 538 – 546.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.