Show simple item record

New perspectives on ACL injury: On the role of repetitive subâ maximal knee loading in causing ACL fatigue failure

dc.contributor.authorWojtys, Edward M.
dc.contributor.authorBeaulieu, Mélanie L.
dc.contributor.authorAshton‐miller, James A.
dc.date.accessioned2017-01-10T19:09:53Z
dc.date.available2018-02-01T14:56:12Zen
dc.date.issued2016-12
dc.identifier.citationWojtys, Edward M.; Beaulieu, Mélanie L. ; Ashton‐miller, James A. (2016). "New perspectives on ACL injury: On the role of repetitive subâ maximal knee loading in causing ACL fatigue failure." Journal of Orthopaedic Research 34(12): 2059-2068.
dc.identifier.issn0736-0266
dc.identifier.issn1554-527X
dc.identifier.urihttps://hdl.handle.net/2027.42/135588
dc.description.abstractIn this paper, we review a series of studies that we initiated to examine mechanisms of anterior cruciate ligament (ACL) injury in the hope that these injuries, and their sequelae, can be better prevented. First, using the earliest in vitro model of a simulated singleâ leg jump landing or pivot cut with realistic knee loading rates and transâ knee muscle forces, we identified the worstâ case dynamic knee loading that causes the greatest peak ACL strain: Combined knee compression, flexion, and internal tibial rotation. We also identified morphologic factors that help explain individual susceptibility to ACL injury. Second, using the above knee loading, we introduced a possible paradigm shift in ACL research by demonstrating that the human ACL can fail by a sudden rupture in response to repeated subâ maximal knee loading. If that load is repeated often enough over a short time interval, the failure tended to occur proximally, as observed clinically. Third, we emphasize the value of a physical exam of the hip by demonstrating how limited internal axial rotation at the hip both increases the susceptibility to ACL injury in professional athletes, and also increases peak ACL strain during simulated pivot landings, thereby further increasing the risk of ACL fatigue failure. When training atâ risk athletes, particularly females with their smaller ACL crossâ sections, rationing the number and intensity of worstâ case knee loading cycles, such that ligament degradation is within the ACL’s ability to remodel, should decrease the risk for ACL rupture due to ligament fatigue failure.© 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2059â 2068, 2016.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfatigue failure
dc.subject.othermuscle
dc.subject.othertibial rotation
dc.subject.otherrepetitive loading
dc.subject.otheranterior cruciate ligament
dc.titleNew perspectives on ACL injury: On the role of repetitive subâ maximal knee loading in causing ACL fatigue failure
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135588/1/jor23441.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135588/2/jor23441_am.pdf
dc.identifier.doi10.1002/jor.23441
dc.identifier.sourceJournal of Orthopaedic Research
dc.identifier.citedreferenceLipps DB, Wojtys EM, Ashtonâ Miller JA. 2013. Anterior cruciate ligament fatigue failures in knees subjected to repeated simulated pivot landings. Am J Sports Med 41: 1058 â 1066.
dc.identifier.citedreferenceShelburne KB, Pandy MG, Torry MR. 2004. Comparison of shear forces and ligament loading in the healthy and ACLâ deficient knee during gait. J Biomech 37: 313 â 319.
dc.identifier.citedreferenceShultz SJ, Perrin DH. 1999. The role of dynamic hamstring activation in preventing knee ligament injury. Athl Ther Today 4: 49 â 53.
dc.identifier.citedreferenceWithrow TJ, Huston LJ, Wojtys EM, et al. 2008. Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J Bone Joint Surg Am 90: 815 â 823.
dc.identifier.citedreferenceWorrell TW, Perrin DH, Denegar CR. 1989. The influence of hip position on quadriceps and hamstring peak torque and reciprocal muscle group ratio values. J Orthop Sports Phys Ther 11: 104 â 107.
dc.identifier.citedreferenceHewett TE, Myer GD, Ford KR, et al. 2005. Biomechanical measures of neuromuscular control and abduction loading of the knee predict ACL injury risk in female athletes: a prospective study. Am J Sports Med 33: 492 â 501.
dc.identifier.citedreferenceMyer GD, Ford KR, Hewett TE. 2004. Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J Athl Train 39: 352 â 364.
dc.identifier.citedreferenceOh YK, Kreinbrink JL, Wojtys EM, et al. 2012. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing. J Orthop Res 30: 528 â 534.
dc.identifier.citedreferenceHewett TE, Myer GD, Ford KR, et al. 2005. Biomechanical measures of neuromuscular control and abduction loading of the knee predict ACL injury risk in female athletes: a prospective study. Am J Sports Med 33: 492 â 501.
dc.identifier.citedreferenceOh YK, Lipps DB, Ashtonâ Miller JA, et al. 2012. What strains the anterior cruciate ligament during a pivot landing ? Am J Sports Med 40: 574 â 583.
dc.identifier.citedreferenceDejour D, Ntagiopoulos PG, Saggin PR, et al. 2013. The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy 29: 491 â 499.
dc.identifier.citedreferenceThornton GM, Schwab TD, Oxland TR. 2007. Cyclic loading causes faster rupture and strain rate than static loading in medial collateral ligament at high stress. Clin Biomech (Bristol, Avon) 22: 932 â 940.
dc.identifier.citedreferenceChandrashekar N, Mansouri H, Slauterbeck J, et al. 2006. Sexâ based differences in the tensile properties of the human anterior cruciate ligament. J Biomech 39: 2943 â 2950.
dc.identifier.citedreferenceChaudhari AM, Zelman EA, Flanigan DC, et al. 2009. Anterior cruciate ligamentâ injured subjects have smaller anterior cruciate ligaments than matched controls: a magnetic resonance imaging study. Am J Sports Med 37: 1282 â 1287.
dc.identifier.citedreferenceKocher MS, Micheli LJ, Zurakowski D, et al. 2002. Partial tears of the anterior cruciate ligament in children and adolescents. Am J Sports Med 30: 697 â 703.
dc.identifier.citedreferenceBeaulieu ML, Carey G, Schlecht S, et al. 2015. A quantitative comparison of the microscopic anatomy of the human ACL femoral and tibial entheses. J Orthop Res 33: 1811 â 1817.
dc.identifier.citedreferenceBeaulieu ML, Carey GE, Schlecht SH, et al. 2016. On the heterogeneity of the femoral enthesis of the human ACL: microscopic anatomy and clinical implications. J Exp Orthop 3: 14.
dc.identifier.citedreferenceBedi A, Warren RF, Wojtys EM, et al. 2016. Restriction in hip internal rotation is associated with an increased risk of ACL injury. Knee Surg Sports Traumatol Arthrosc 24: 2024 â 2031.
dc.identifier.citedreferenceBeaulieu ML, Oh YK, Bedi A, et al. 2014. Does limited internal femoral rotation increase peak anterior cruciate ligament strain during a simulated pivot landing ? Am J Sports Med 42: 2955 â 2963.
dc.identifier.citedreferenceLipps DB, Oh YK, Ashtonâ Miller JA, et al. 2012. Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med 40: 32 â 40.
dc.identifier.citedreferenceGrzelak P, Podgorski M, Stefanczyk L, et al. 2012. Hypertrophied cruciate ligament in high performance weightlifters observed in magnetic resonance imaging. Int Orthop 36: 1715 â 1719.
dc.identifier.citedreferenceOlsen OE, Myklebust G, Engebretsen L, et al. 2004. Injury mechanisms for anterior cruciate ligament injuries in team handball a systematic video analysis. Am J Sports Med 32: 1002 â 1012.
dc.identifier.citedreferenceBoden BP, Torg JS, Knowles SB, et al. 2009. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med 37: 252 â 259.
dc.identifier.citedreferenceBenoit DL, Ramsey DK, Lamontagne M, et al. 2005. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24: 152 â 164.
dc.identifier.citedreferenceWithrow TJ, Huston LJ, Wojtys EM, et al. 2006. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med 34: 269 â 274.
dc.identifier.citedreferenceDufek JS, Bates BT. 1991. Biomechanical factors associated with injury during landing in jump sports. Sports Med 12: 326 â 337.
dc.identifier.citedreferenceFleming BC, Renström PA, Beynnon BD, et al. 2001. The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech 34: 163 â 170.
dc.identifier.citedreferenceBeynnon BD, Fleming BC. 1998. Anterior cruciate ligament strain in vivo: a review of previous work. J Biomech 31: 519 â 525.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.