Show simple item record

Optimized Cell Survival and Seeding Efficiency for Craniofacial Tissue Engineering Using Clinical Stem Cell Therapy

dc.contributor.authorRajan, Archana
dc.contributor.authorEubanks, Emily
dc.contributor.authorEdwards, Sean
dc.contributor.authorAronovich, Sharon
dc.contributor.authorTravan, Suncica
dc.contributor.authorRudek, Ivan
dc.contributor.authorWang, Feng
dc.contributor.authorLanis, Alejandro
dc.contributor.authorKaigler, Darnell
dc.date.accessioned2017-01-10T19:09:58Z
dc.date.available2017-01-10T19:09:58Z
dc.date.issued2014-12
dc.identifier.citationRajan, Archana; Eubanks, Emily; Edwards, Sean; Aronovich, Sharon; Travan, Suncica; Rudek, Ivan; Wang, Feng; Lanis, Alejandro; Kaigler, Darnell (2014). "Optimized Cell Survival and Seeding Efficiency for Craniofacial Tissue Engineering Using Clinical Stem Cell Therapy." STEM CELLS Translational Medicine 3(12): 1495-1503.
dc.identifier.issn2157-6564
dc.identifier.issn2157-6580
dc.identifier.urihttps://hdl.handle.net/2027.42/135593
dc.publisherAlphaMed Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBone marrow
dc.subject.otherScaffold
dc.subject.otherImplants
dc.subject.otherCell therapy
dc.subject.otherStem cells
dc.subject.otherBone regeneration
dc.titleOptimized Cell Survival and Seeding Efficiency for Craniofacial Tissue Engineering Using Clinical Stem Cell Therapy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
dc.contributor.affiliationotherCenter for Oral Health Research
dc.contributor.affiliationotherDepartment of Oral and Maxillofacial Surgery
dc.contributor.affiliationotherDepartment of Periodontics and Oral Medicine
dc.contributor.affiliationotherDepartment of Orthodontics and Pediatric Dentistry
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135593/1/sct320143121495.pdf
dc.identifier.doi10.5966/sctm.2014-0039
dc.identifier.sourceSTEM CELLS Translational Medicine
dc.identifier.citedreferenceSteinert AF, Rackwitz L, Gilbert F. Concise review: The clinical application of mesenchymal stem cells for musculoskeletal regeneration: Current status and perspectives. Stem Cells Translational Medicine. 2012; 1: 237 – 247.
dc.identifier.citedreferenceMyeroff C, Archdeacon M. Autogenous bone graft: Donor sites and techniques. J Bone Joint Surg Am. 2011; 93: 2227 – 2236.
dc.identifier.citedreferenceKirmeier R, Payer M, Lorenzoni M. Harvesting of cancellous bone from the proximal tibia under local anesthesia: Donor site morbidity and patient experience. J Oral Maxillofac Surg. 2007; 65: 2235 – 2241.
dc.identifier.citedreferenceBarone A, Ricci M, Mangano F. Morbidity associated with iliac crest harvesting in the treatment of maxillary and mandibular atrophies: A 10-year analysis. J Oral Maxillofac Surg. 2011; 69: 2298 – 2304.
dc.identifier.citedreferenceKrebsbach PH, Robey PG. Dental and skeletal stem cells: Potential cellular therapeutics for craniofacial regeneration. J Dent Educ. 2002; 66: 766 – 773.
dc.identifier.citedreferenceGamie Z, Tran GT, Vyzas G. Stem cells combined with bone graft substitutes in skeletal tissue engineering. Expert Opin Biol Ther. 2012; 12: 713 – 729.
dc.identifier.citedreferenceDelaere P, Vranckx J, Verleden G. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med. 2010; 362: 138 – 145.
dc.identifier.citedreferenceMacchiarini P, Jungebluth P, Go T. Clinical transplantation of a tissue-engineered airway. Lancet. 2008; 372: 2023 – 2030.
dc.identifier.citedreferenceMarcacci M, Kon E, Moukhachev V. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007; 13: 947 – 955.
dc.identifier.citedreferenceSoltan M, Smiler D, Soltan C. Bone grafting by means of a tunnel dissection: Predictable results using stem cells and matrix. Implant Dent. 2010; 19: 280 – 287.
dc.identifier.citedreferenceSándor GK, Numminen J, Wolff J. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Translational Medicine. 2014; 3: 530 – 540.
dc.identifier.citedreferenceKaigler D, Pagni G, Park CH. Stem cell therapy for craniofacial bone regeneration: A randomized, controlled feasibility trial. Cell Transplant. 2013; 22: 767 – 777.
dc.identifier.citedreferenceYeo A, Rai B, Sju E. The degradation profile of novel, bioresorbable PCL-TCP scaffolds: An in vitro and in vivo study. J Biomed Mater Res A. 2008; 84: 208 – 218.
dc.identifier.citedreferenceEmerton KB, Drapeau SJ, Prasad H. Regeneration of periodontal tissues in non-human primates with rhGDF-5 and beta-tricalcium phosphate. J Dent Res. 2011; 90: 1416 – 1421.
dc.identifier.citedreferenceKim DM, Camelo M, Nevins M. Alveolar ridge reconstruction with a composite alloplastic biomaterial. Int J Periodontics Restorative Dent. 2012; 32: e204 – e209.
dc.identifier.citedreferenceStavropoulos A, Windisch P, Gera I. A phase IIa randomized controlled clinical and histological pilot study evaluating rhGDF-5/β-TCP for periodontal regeneration. J Clin Periodontol. 2011; 38: 1044 – 1054.
dc.identifier.citedreferenceDennis JE, Esterly K, Awadallah A. Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration. Stem Cells. 2007; 25: 2575 – 2582.
dc.identifier.citedreferenceCaldwell J, Palsson BO, Locey B. Culture perfusion schedules influence the metabolic activity and granulocyte-macrophage colony-stimulating factor production rates of human bone marrow stromal cells. J Cell Physiol. 1991; 147: 344 – 353.
dc.identifier.citedreferenceSchwartz RM, Palsson BO, Emerson SG. Rapid medium perfusion rate significantly increases the productivity and longevity of human bone marrow cultures. Proc Natl Acad Sci USA. 1991; 88: 6760 – 6764.
dc.identifier.citedreferenceKaigler D, Pagni G, Park CH. Angiogenic and osteogenic potential of bone repair cells for craniofacial regeneration. Tissue Eng Part A. 2010; 16: 2809 – 2820.
dc.identifier.citedreferenceVacanti JP, Langer R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999; 354 ( suppl 1 ) SI32 – SI34.
dc.identifier.citedreferenceRai B, Lin JL, Lim ZX. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Biomaterials. 2010; 31: 7960 – 7970.
dc.identifier.citedreferenceKrebsbach PH, Kuznetsov SA, Satomura K. Bone formation in vivo: Comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation. 1997; 63: 1059 – 1069.
dc.identifier.citedreferenceZhou J, Lin H, Fang T. The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials. 2010; 31: 1171 – 1179.
dc.identifier.citedreferenceCoquelin L, Fialaire-Legendre A, Roux S. In vivo and in vitro comparison of three different allografts vitalized with human mesenchymal stromal cells. Tissue Eng Part A. 2012; 18: 1921 – 1931.
dc.identifier.citedreferenceJungebluth P, Haag JC, Lim ML. Verification of cell viability in bioengineered tissues and organs before clinical transplantation. Biomaterials. 2013; 34: 4057 – 4067.
dc.identifier.citedreferenceMcLaren AJ, Friend PJ. Trends in organ preservation. Transplant Int. 2003; 16: 701 – 708.
dc.identifier.citedreferenceKheirabadi BS, Fahy GM. Permanent life support by kidneys perfused with a vitrifiable (7.5 molar) cryoprotectant solution. Transplantation. 2000; 70: 51 – 57.
dc.identifier.citedreferenceGarrity JT, Stoker AM, Sims HJ. Improved osteochondral allograft preservation using serum-free media at body temperature. Am J Sports Med. 2012; 40: 2542 – 2548.
dc.identifier.citedreferenceEves PC, Baran M, Bullett NA. Establishing a transport protocol for the delivery of melanocytes and keratinocytes for the treatment of vitiligo. Tissue Eng Part C Methods. 2011; 17: 375 – 382.
dc.identifier.citedreferenceSchenk RK, Buser D, Hardwick WR. Healing pattern of bone regeneration in membrane-protected defects: A histologic study in the canine mandible. Int J Oral Maxillofac Implants. 1994; 9: 13 – 29.
dc.identifier.citedreferenceMelcher AH. On the repair potential of periodontal tissues. J Periodontol. 1976; 47: 256 – 260.
dc.identifier.citedreferenceMcAllister BS, Haghighat K. Bone augmentation techniques. J Periodontol. 2007; 78: 377 – 396.
dc.identifier.citedreferenceThorén H, Numminen L, Snäll J. Occurrence and types of dental injuries among patients with maxillofacial fractures. Int J Oral Maxillofac Surg. 2010; 39: 774 – 778.
dc.identifier.citedreferenceGassner R, Tuli T, Hachl O. Cranio-maxillofacial trauma: A 10 year review of 9,543 cases with 21,067 injuries. J Craniomaxillofac Surg. 2003; 31: 51 – 61.
dc.identifier.citedreferenceAllareddy V, Allareddy V, Nalliah RP. Epidemiology of facial fracture injuries. J Oral Maxillofac Surg. 2011; 69: 2613 – 2618.
dc.identifier.citedreferenceMisch CM. Comparison of intraoral donor sites for onlay grafting prior to implant placement. Int J Oral Maxillofac Implants. 1997; 12: 767 – 776.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.