Show simple item record

Overview of Therapeutic Ultrasound Applications and Safety Considerations

dc.contributor.authorMiller, Douglas L.
dc.contributor.authorSmith, Nadine B.
dc.contributor.authorBailey, Michael R.
dc.contributor.authorCzarnota, Gregory J.
dc.contributor.authorHynynen, Kullervo
dc.contributor.authorMakin, Inder Raj S.
dc.date.accessioned2017-01-10T19:10:08Z
dc.date.available2017-01-10T19:10:08Z
dc.date.issued2012-04
dc.identifier.citationMiller, Douglas L.; Smith, Nadine B.; Bailey, Michael R.; Czarnota, Gregory J.; Hynynen, Kullervo; Makin, Inder Raj S. (2012). "Overview of Therapeutic Ultrasound Applications and Safety Considerations." Journal of Ultrasound in Medicine 31(4): 623-634.
dc.identifier.issn0278-4297
dc.identifier.issn1550-9613
dc.identifier.urihttps://hdl.handle.net/2027.42/135598
dc.publisherAmerican Institute of Ultrasound in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.othertherapeutic ultrasound
dc.subject.othermedical ultrasound devices
dc.subject.otherultrasound safety
dc.titleOverview of Therapeutic Ultrasound Applications and Safety Considerations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiology, University of Michigan, Ann Arbor, Michigan USA
dc.contributor.affiliationotherDepartment of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
dc.contributor.affiliationotherSunnybrook Research Institute, Sunnybrook Health Science Center, Toronto, Ontario, Canada
dc.contributor.affiliationotherApplied Physics Laboratory, University of Washington, Seattle, Washington USA
dc.contributor.affiliationotherDepartment of Bio-engineering, Penn State University, University Park, Pennsylvania USA
dc.contributor.affiliationotherSchool of Osteopathic Medicine and Arizona School of Dentistry, A. T. Still University, Mesa Arizona USA
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135598/1/jum2012314623.pdf
dc.identifier.doi10.7863/jum.2012.31.4.623
dc.identifier.sourceJournal of Ultrasound in Medicine
dc.identifier.citedreferenceKrambeck AE, Handa SE, Evan AP, Lingeman JE. Brushite stone disease as a consequence of lithotripsy? Urol Res 2010; 38: 293 – 299.
dc.identifier.citedreferenceKrambeck AE, Gettman MT, Rohlinger AL, Lohse CM, Patterson DE, Segura JW. Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of follow-up. J Urol 2006; 175: 1742 – 1747.
dc.identifier.citedreferencePace KT, Ghiculete D, Harju M, Honey RJ; University of Toronto Lithotripsy Associates. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 2005; 174: 595 – 599.
dc.identifier.citedreferenceHanda RK, Bailey MR, Paun M. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. BJU Int 2009; 103: 1270 – 1274.
dc.identifier.citedreferenceBoucaud A. Trends in the use of ultrasound-mediated transdermal drug delivery. Drug Discov Today 2004; 9: 827 – 828.
dc.identifier.citedreferencePitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery: a general review. Expert Opin Drug Deliv 2004; 1: 37 – 56.
dc.identifier.citedreferenceMitragotri S, Kost J. Low-frequency sonophoresis: a review. Adv Drug Deliv Rev 2004; 56: 589 – 601.
dc.identifier.citedreferenceFarinha A, Kellogg S, Dickinson K, Davison T. Skin impedance reduction for electrophysiology measurements using ultrasonic skin permeation: initial report and comparison to current methods. Biomed Instrum Technol 2006; 40: 72 – 77.
dc.identifier.citedreferenceMitragotri S, Edwards DA, Blankschtein D, Langer R. A mechanistic study of ultrasonically-enhanced transdermal drug delivery. J Pharm Sci 1995; 84: 697 – 706.
dc.identifier.citedreferenceSiegel RJ, Luo H. Ultrasound thrombolysis. Ultrasonics 2008; 48: 312 – 320.
dc.identifier.citedreferenceDaffertshofer M, Gass A, Ringleb P. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator—results of a phase II clinical trial. Stroke 2005; 36: 1441 – 1446.
dc.identifier.citedreferenceHitchcock KE, Holland CK. Ultrasound-assisted thrombolysis for stroke therapy: better thrombus break-up with bubbles. Stroke 2010; 4 (suppl): S50 – S53.
dc.identifier.citedreferenceTufail Y, Matyushov A, Baldwin N. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 2010; 66: 681 – 694.
dc.identifier.citedreferenceTinkov S, Bekeredjian R, Winter G, Coester C. Microbubbles as ultrasound-triggered drug carriers. J Pharm Sci 2009; 98: 1935 – 1961.
dc.identifier.citedreferenceUnger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 2004; 56: 1291 – 1314.
dc.identifier.citedreferenceFerrara K, Pollard R, Border M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 2007; 9: 415 – 447.
dc.identifier.citedreferenceVykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics 2008; 48: 279 – 296.
dc.identifier.citedreferenceTartis MS, McCallan J, Lum AF. Therapeutic effects of paclitaxel-containing ultrasound contrast agents. Ultrasound Med Biol 2006; 32: 1771 – 1780.
dc.identifier.citedreferenceMiller DL. Ultrasound-mediated gene therapy. In: Wu J, Nyborg WL (eds). Emerging Therapeutic Ultrasound. Singapore: World Scientific Publishing Co; 2006: 69 – 130.
dc.identifier.citedreferenceKieran K, Hall TL, Parsons JE. Refining histotripsy: defining the parameter space for the creation of nonthermal lesions with high-intensity, pulsed focused ultrasound of the in vitro kidney. J Urol 2007; 178: 672 – 676.
dc.identifier.citedreferenceXu Z, Raghavan M, Hall TL, Mycek MA, Fowlkes JB. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy: histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control 2008; 55: 1122 – 1132.
dc.identifier.citedreferenceApfel RE. Acoustic cavitation. In: Edmonds PD (ed). Ultrasonics. Methods of Experimental Physics. Vol 19. New York, NY: Academic Press; 1981: 355 – 411.
dc.identifier.citedreferenceHamilton M, Blackstock D. Nonlinear Acoustics. San Diego, CA: Academic Press; 1998.
dc.identifier.citedreferenceLewin P, Ziskin M. Ultrasonic Exposimetry. Boca Raton, FL: CRC Press; 1992.
dc.identifier.citedreferenceHarris GR. Progress in medical ultrasound exposimetry. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52: 717 – 736.
dc.identifier.citedreferenceShaw A, ter Haar G. Requirements for Measurement Standards in High-Intensity Focused Ultrasound (HIFU) Fields. Teddington, England: National Physical Laboratory; 2006. Report DQL AC 015.
dc.identifier.citedreferenceShaw A, Hodnett M. Calibration and measurement issues for therapeutic ultrasound. Ultrasonics 2008; 48: 234 – 252.
dc.identifier.citedreferenceHwang JH, Tu J, Brayman AA, Matula TJ, Crum LA. Correlation between inertial cavitation dose and endothelial cell damage in vivo. Ultrasound Med Biol 2006; 32: 1611 – 1619.
dc.identifier.citedreferenceMcDannold N, Vykhodtseva N, Hynynen K. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 2006; 51: 793 – 807.
dc.identifier.citedreferenceLehmann JF. The biophysical basis of biologic ultrasonic reactions with special reference to ultrasonic therapy. Arch Phys Med Rehabil 1953; 34: 139 – 151.
dc.identifier.citedreferenceFry WJ, Mosberg WH Jr, Barnard JW, Fry FJ. Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 1954; 11: 471 – 478.
dc.identifier.citedreferenceNewell JA. Ultrasonics in medicine. Phys Med Biol 1963; 18: 241 – 264.
dc.identifier.citedreferenceWells PN. Ultrasonics in medicine and biology. Phys Med Biol 1977; 22: 629 – 669.
dc.identifier.citedreferenceKremkau FW. Cancer therapy with ultrasound: a historical review. J Clin Ultrasound 1979; 7: 287 – 300.
dc.identifier.citedreferenceRobertson VJ, Baker KG. A review of therapeutic ultrasound: effectiveness studies. Phys Ther 2001; 81: 1339 – 1350.
dc.identifier.citedreferenceSamulski TV, Grant WJ, Oleson JR. Clinical experience with a multi-element ultrasonic hyperthermia system: analysis of treatment temperatures. Int J Hyperthermia 1990; 6: 909 – 922.
dc.identifier.citedreferenceTempany CMC, Stewart EA, McDannold N, Quade B, Jolesz F, Hynynen K. MRI-guided focused ultrasound surgery (FUS) of uterine leiomyomas: a feasibility study. Radiology 2003; 226: 897 – 905.
dc.identifier.citedreferenceBurgess SE, Silverman RH, Coleman DJ. Treatment of glaucoma with high-intensity focused ultrasound. Ophthalmology 1986; 93: 831 – 838.
dc.identifier.citedreferenceKlingler HC, Susani M, Seip R, Mauermann J, Sanghvi N, Marberger MJ. A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound. Eur Urol 2008; 53: 810 – 816.
dc.identifier.citedreferenceNinet J, Roques X, Seitelberger R. Surgical ablation of atrial fibrillation with off-pump, epicardial, high-intensity focused ultrasound: results of a multicenter trial. J Thorac Cardiovasc Surg 2005; 130: 803 – 809.
dc.identifier.citedreferenceAlam M, White LE, Martin N, Witherspoon J, Yoo S, West DP. Ultrasound tightening of facial and neck skin: a rater-blinded prospective cohort study. J Am Acad Dermatol 2010; 62: 262 – 269.
dc.identifier.citedreferenceWeizer AZ, Zhong P, Preminger GM. New concepts in shock wave lithotripsy. Urol Clin North Am 2007; 34: 375 – 382.
dc.identifier.citedreferenceLowe G, Knudsen BE. Ultrasonic, pneumatic and combination intracorporeal lithotripsy for percutaneous nephrolithotomy. J Endourol 2009; 23: 1663 – 1668.
dc.identifier.citedreferenceHaake M, Buch M, Schoellner C. Extracorporeal shock wave therapy for plantar fasciitis: randomised controlled multicentre trial. BMJ 2003; 327: 75.
dc.identifier.citedreferencePacker M, Fishkind WJ, Fine IH, Seibel BS, Hoffman RS. The physics of phaco: a review. J Cataract Refract Surg 2005; 31: 424 – 431.
dc.identifier.citedreferenceMann MW, Palm MD, Sengelmann RD. New advances in liposuction technology. Semin Cutan Med Surg 2008; 27: 72 – 82.
dc.identifier.citedreferenceKoch C, Borys M, Fedtke T, Richter U, Pöhl B. Determination of the acoustic output of a harmonic scalpel. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 1522 – 1529.
dc.identifier.citedreferenceParikh S, Motarjeme A, McNamara T. Ultrasound-accelerated thrombolysis for the treatment of deep vein thrombosis: initial clinical experience. J Vasc Interv Radiol 2008; 19: 521 – 528.
dc.identifier.citedreferenceSmith NB. Applications of ultrasonic skin permeation in transdermal drug delivery. Expert Opin Drug Deliv 2008; 5: 1107 – 1120.
dc.identifier.citedreferenceGebauer D, Mayr E, Orthner E, Ryaby JP. Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med Biol 2005; 31: 1391 – 1402.
dc.identifier.citedreferenceKim SC, Matlaga BR, Tinmouth WW. In vitro assessment of a novel dual-probe ultrasonic intracorporeal lithotriptor. J Urol 2007; 177: 1363 – 1365.
dc.identifier.citedreferenceNyborg WL, Carson PL, Carstensen EL. Exposure Criteria for Medical Diagnostic Ultrasound, II: Criteria Based on All Known Mechanisms. Bethesda, MD: National Council on Radiation Protection and Measurements; 2002. Report 140.
dc.identifier.citedreferenceFowlkes JB; Bioeffects Committee of the American Institute of Ultrasound in Medicine. American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: executive summary. J Ultrasound Med 2008; 27: 503 – 515.
dc.identifier.citedreferenceAlves EM, Angrisani AT, Santiago MB. The use of extracorporeal shock waves in the treatment of osteonecrosis of the femoral head: a systematic review. Clin Rheumatol 2009; 28: 1247 – 1251.
dc.identifier.citedreferenceHundt W, Yuh EL, Bednarski MD, Guccione S. Gene expression profiles, histologic analysis, and imaging of squamous cell carcinoma model treated with focused ultrasound beams. Am J Radiol 2007; 189: 726 – 736.
dc.identifier.citedreferenceSilberstein J, Lakin CM, Parsons JK. Shock wave lithotripsy and renal hemorrhage. Rev Urol 2008; 10: 236 – 241.
dc.identifier.citedreferenceMachet L, Boucaud A. Phonophoresis: efficiency, mechanisms and skin tolerance. Int J Pharm 2002; 243: 1 – 15.
dc.identifier.citedreferenceBaker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: biophysical effects. Phys Ther 2001; 81: 1351 – 1358.
dc.identifier.citedreferenceAlexander LD, Gilman DR, Brown DR, Brown JL, Houghton PE. Exposure to low amounts of ultrasound energy does not improve soft tissue shoulder pathology: a systematic review. Phys Ther 2010; 90: 14 – 25.
dc.identifier.citedreferenceSapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984; 10: 787 – 800.
dc.identifier.citedreferenceDiederich CJ, Hynynen K. Ultrasound technology for hyperthermia. Ultrasound Med Biol 1999; 25: 871 – 887.
dc.identifier.citedreferenceMarchal C. Clinical trials of ultrasound hyperthermia. Ultrasonics 1992; 30: 139 – 141.
dc.identifier.citedreferenceKong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 2000; 60: 4440 – 4445.
dc.identifier.citedreferenceKennedy JE, Ter Haar GR, Cranston D. High-intensity focused ultrasound: surgery of the future? Br J Radiol 2003; 76: 590 – 599.
dc.identifier.citedreferenceGliklich R, White WM, Barthe PG, Slayton MH, Makin IRS, Clinical pilot study of intense ultrasound (IUS) therapy to deep dermal facial skin and subcutaneous tissues. Arch Facial Plast Surg 2007; 9: 88 – 95.
dc.identifier.citedreferenceEvans KD, Weiss B, Knopp M. High-Intensity focused ultrasound (HIFU) for specific therapeutic treatments: a literature review. J Diagn Med Sonography 2007; 23: 3119 – 3127.
dc.identifier.citedreferenceFoley JL, Little JW, Vaezy S. Effects of high-intensity focused ultrasound on nerve conduction. Muscle Nerve 2008; 37: 241 – 250.
dc.identifier.citedreferenceGelet A, Chapelon JY, Bouvier R. Transrectal high-intensity focused ultrasound: minimally invasive therapy of localized prostate cancer. J Endourol 2000; 14: 519 – 528.
dc.identifier.citedreferenceThüroff S, Chaussy C, Vallancien G. High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European Multicentric Study. J Endourol 2003; 17: 673 – 677.
dc.identifier.citedreferenceJolesz F. MRI-guided focused ultrasound surgery. Annu Rev Med 2009; 60: 417 – 430.
dc.identifier.citedreferenceMcDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in three patients. Neurosurgery 2010; 66: 323 – 332.
dc.identifier.citedreferenceMartin E, Jeanmonod D, Morel A, Zadicario E, Werner B. High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 2009; 66: 858 – 861.
dc.identifier.citedreferenceHynynen K, Pomeroy O, Smith DN. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 2001; 219: 176 – 185.
dc.identifier.citedreferenceGianfelice D, Khiat A, Amara M, Belblidia A, Boulanger Y. MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness—initial experience. Radiology 2003; 227: 849 – 855.
dc.identifier.citedreferenceGianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M. Palliative treatment of painful bone metastases with MR imaging-guided focused ultrasound. Radiology 2008; 249: 355 – 563.
dc.identifier.citedreferenceRoujol S, Ries M, Quesson B, Moonen C, Denis de Senneville B. Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs. Magn Reson Med 2010; 63: 1080 – 1087.
dc.identifier.citedreferenceChopra R, Tang K, Burtnyk M. Analysis of the spatial and temporal accuracy of heating in the prostate gland using transurethral ultrasound therapy and active MR temperature feedback. Phys Med Biol 2009; 54: 2615 – 2633.
dc.identifier.citedreferenceFedewa RJ, Carlson RF, Seip R, Sanghvi NT, Koch MO, Gardner TA. Prediction of success for HIFU treatments of prostate cancer based on acoustic energy density. In: Ultrasonics Symposium, 2006. New York, NY: Institute of Electrical and Electronics Engineers; 2006: 732 – 735.
dc.identifier.citedreferenceCasper A, Liu D, Ebbini ES. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography. IEEE Trans Biomed Eng 2012; 59: 95 – 105.
dc.identifier.citedreferenceNoor Buchholz NP. Intracorporeal lithotripters: selecting the optimum machine. BJU Int 2002; 89: 157 – 161.
dc.identifier.citedreferenceCuriel L, Huang Y, Vykhodtseva N, Hynynen K. Focused ultrasound treatment of VX2 tumors controlled by local harmonic motion. Phys Med Biol 2009; 54: 3405 – 3419.
dc.identifier.citedreferenceAnand A, Kaczkowski PJ. Noninvasive determination of in situ heating rate using kHz acoustic emissions and focused ultrasound. Ultrasound Med Biol 2009; 35: 1662 – 1671.
dc.identifier.citedreferenceCanney MS, Khoklova V, Bessonova OV, Bailey MR, Crum LA, Shock-induced heating and millisecond boiling in gels and tissue due to high-intensity focused ultrasound. Ultrasound Med Biol 2010; 36: 250 – 267.
dc.identifier.citedreferenceMakin IR, Mast TD, Faidi WF, Runk MM, Barthe PG, Slayton MH. Miniaturized arrays for interstitial ablation and imaging. Ultrasound Med Biol 2005; 31: 1539 – 1550.
dc.identifier.citedreferenceKinsey AM, Diederich CJ, Rieke V. Transurethral ultrasound applicators with dynamic multi-sector control for prostate thermal therapy: in vivo evaluation under MR guidance. Med Phys 2008; 35: 2081 – 2093.
dc.identifier.citedreferencePrat F, Lafon C, De Lima DM. Endoscopic treatment of cholangio-carcinoma and carcinoma of the duodenal papilla by intraductal high-intensity US: results of a pilot study. Gastrointest Endosc 2002; 56: 909 – 915.
dc.identifier.citedreferenceSchmidt B, Chun KR, Kuck KH, Antz M. Pulmonary vein isolation by high-intensity focused ultrasound. Indian Pacing Electrophysiol J 2007; 7: 126 – 133.
dc.identifier.citedreferenceMoreno-Moraga J, Valero-Altés T, Riquelme AM, Isarria-Marcosy MI, Royo de la T. Body contouring by noninvasive transdermal focused ultrasound. Lasers Surg Med 2007; 39: 315 – 323.
dc.identifier.citedreferenceFatemi A. High-intensity focused ultrasound effectively reduces adipose tissue. Semin Cutan Med Surg 2009; 28: 257 – 262.
dc.identifier.citedreferenceWhite WM, Makin IRS, Barthe PG, Slayton MH, Gliklich R. Selective creation of thermal injury zones within the superficial musculoaponeurotic system using intense ultrasound therapy: a new target for noninvasive facial rejuvenation. Arch Facial Plast Surg 2007; 9: 22 – 29.
dc.identifier.citedreferenceHynynen K, Chung AH, Colucci V, Jolesz FA. Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo. Ultrasound Med Biol 1996; 22: 193 – 201.
dc.identifier.citedreferenceRove KO, Sullivan KF, Crawford ED. High-intensity focused ultrasound: ready for primetime. Urol Clin North Am 2010; 37: 27 – 35.
dc.identifier.citedreferenceBorchert B, Lawrenz T, Hansky B, Stellbrink C. Lethal atrioesophageal fistula after pulmonary vein isolation using high-intensity focused ultrasound (HIFU). Heart Rhythm 2008; 5: 145 – 148.
dc.identifier.citedreferenceNeven K, Schmidt B, Metzner A. Fatal end of a safety algorithm for pulmonary vein isolation with use of high-intensity focused ultrasound. Circ Arrhythm Electrophysiol 2010; 3: 260 – 265.
dc.identifier.citedreferenceJung SE, Cho SH, Jang JH, Han JY. High-intensity focused ultrasound ablation in hepatic and pancreatic cancer: complications. Abdom Imaging 2011; 36: 185 – 195.
dc.identifier.citedreferenceMcAteer JA, Bailey MR, Williams JC Jr, Cleveland RO, Evan AP. Strategies for improved shock wave lithotripsy. Minerva Urol Nefrol 2005; 57: 271 – 287.
dc.identifier.citedreferenceEisenmenger W. The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol 2001; 27: 683 – 693.
dc.identifier.citedreferenceSapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR. A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 2007; 121: 1190 – 1202.
dc.identifier.citedreferencePishchalnikov YA, Neucks JS, VonDerHaar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol 2006; 176: 2706 – 2710.
dc.identifier.citedreferenceEvan AP, McAteer JA. Effects of shock wave lithotripsy. In: Coe Fl, Favus M, Pak C, Parks J, Preminger G (eds). Kidney Stones: Medical and Surgical Management. Philadelphia, PA: Lippincott-Raven; 1996: 549 – 570.
dc.identifier.citedreferenceKoga H, Matsuoka K, Noda S, Yamashita T. Cumulative renal damage in dogs by repeated treatment with extracorporeal shock waves. Int J Urol 1996; 3: 134 – 140.
dc.identifier.citedreferenceEvan AP, Willis LR, Lingeman JE, McAteer JA. Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 1998; 78: 1 – 8.
dc.identifier.citedreferenceJanetschek G, Frauscher F, Knapp R, Höfle G, Peschel R, Bartsch G. New-onset hypertension after extracorporeal shock wave lithotripsy: age-related incidence and prediction by intrarenal resistive index. J Urol 1997; 158: 346 – 351.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.