Show simple item record

The inter‐annual variability of southerly low‐level jets in North America

dc.contributor.authorYu, Lejiang
dc.contributor.authorZhong, Shiyuan
dc.contributor.authorWinkler, Julie A.
dc.contributor.authorDoubler, Dana L.
dc.contributor.authorBian, Xindi
dc.contributor.authorWalters, Claudia K.
dc.date.accessioned2017-01-10T19:10:21Z
dc.date.available2018-03-01T16:43:49Zen
dc.date.issued2017-01
dc.identifier.citationYu, Lejiang; Zhong, Shiyuan; Winkler, Julie A.; Doubler, Dana L.; Bian, Xindi; Walters, Claudia K. (2017). "The inter‐annual variability of southerly low‐level jets in North America." International Journal of Climatology 37(1): 343-357.
dc.identifier.issn0899-8418
dc.identifier.issn1097-0088
dc.identifier.urihttps://hdl.handle.net/2027.42/135612
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.otherEl Niño Modoki
dc.subject.othersoutherly low‐level jet
dc.subject.otherempirical orthogonal functions (EOFs)
dc.subject.otherPacific Decadal Oscillation (PDO)
dc.subject.otherEl Niño Southern Oscillation (ENSO)
dc.titleThe inter‐annual variability of southerly low‐level jets in North America
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135612/1/joc4708_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135612/2/joc4708.pdf
dc.identifier.doi10.1002/joc.4708
dc.identifier.sourceInternational Journal of Climatology
dc.identifier.citedreferenceTucker SC, Banta RM, Langford AO, Senff CJ, Brewer WA, William EJ, Lerner BM, Osthoff HD, Hardesty RM. 2006. Relationships of coastal nocturnal boundary layer winds and turbulence to Houston ozone concentrations during TexAQS 2006. J. Geophy. Res. 115: D10304, doi: 10.1029/2009JD013169
dc.identifier.citedreferenceRife DL, Pinto JO, Monaghan AJ, Davis CA, Hannan JR. 2010. Global distribution and characteristics of diurnally varying low‐level jets. J. Clim. 23: 5041 – 5064.
dc.identifier.citedreferenceSjostedt DW, Sigmon JT, Colucci SJ. 1990. The Carolina nocturnal low‐level jet: synoptic climatology and a case study. Weather Forecast. 5: 404 – 415.
dc.identifier.citedreferenceSmith TM, Reynolds RW, Peterson TC, Lawrimore J. 2008. Improvements to NOAA’s historical merged land‐ocean surface temperature analysis (1880–2006). J. Clim. 21: 2283 – 2296.
dc.identifier.citedreferenceSong J, Liao K, Coulter RL, Lesht BM. 2005. Climatology of the low‐level jet at the southern Great Plains atmospheric boundary layer experiments site. J. Appl. Meteorol. 44: 1593 – 1606.
dc.identifier.citedreferenceStensrud DJ. 1996. Importance of low‐level jets to climate: a review. J. Clim. 9: 1698 – 1711.
dc.identifier.citedreferenceSvoma BM. 2010. The influence of monsoonal gulf surges on precipitation ad diurnal precipitation patterns in central Arizona. Weather Forecast. 25: 281 – 289.
dc.identifier.citedreferenceTing M, Wang H. 2006. The role of the North America topography on the maintenance of the Great Plains summer low‐level jet. J. Atmos. Sci. 63: 1056 – 1068.
dc.identifier.citedreferenceTrenberth KE. 1997. The definition of El Niño. Bull. Am. Meteorol. Soc. 78: 2771 – 2777.
dc.identifier.citedreferenceUccellini LW. 1980. On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low‐level jet in the Great Plains. Mon. Weather Rev. 108: 1689 – 1696.
dc.identifier.citedreferenceUccellini LW, Johnson DR. 1979. Coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Weather Rev. 107: 682 – 703.
dc.identifier.citedreferenceWalters CK, Winkler JA. 2001. Airflow configurations of warm season southerly low‐level wind maxima in the Great Plains: Part I. Spatial and temporal characteristics and relationship to convection. Weather Forecast. 16 ( 5 ): 513 – 530.
dc.identifier.citedreferenceWalters CK, Winkler JA, Shadbolt RP, van Ravensway J, Bierly GD. 2008. A long‐term climatology of southerly and northerly low‐level jets for the central United States. Ann. Assoc. Am. Geogr. 98: 521 – 552.
dc.identifier.citedreferenceWalters CK, Winkler JA, Husseini S, Keeling R, Nikolic J, Zhong S. 2014. Low‐level jets in the North American Regional Reanalysis (NARR): a comparison with rawinsonde observations. J. Appl. Meteorol. Climatol. 53: 2093 – 2113.
dc.identifier.citedreferenceWeaver SJ, Nigam S. 2008. Variability of the Great Plains low‐level jet: large‐scale circulation context and hydroclimate impacts. J. Clim. 21: 1532 – 1551.
dc.identifier.citedreferenceWeaver SJ, Schubert S, Wang H. 2009. Warm season variations in low‐level circulation and precipitation over the central United States in observations, AMIP simulations, and idealized SST experiments. J. Clim. 22: 5401 – 5420.
dc.identifier.citedreferenceWeaver SJ, Baxter S, Kumar A. 2012. Climatic role of North American low‐level jets on U.S. regional tornado activity. J. Clim. 25: 6666 – 6683.
dc.identifier.citedreferenceWexler H. 1961. A boundary layer interpretation of the low‐level jet. Tellus 13: 368 – 378.
dc.identifier.citedreferenceWhiteman CD, Bian X, Zhong S. 1997. Low‐level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains. J. Appl. Meteorol. 36: 1363 – 1376, doi: 10.1175/1520
dc.identifier.citedreferenceWinkler JA. 2004. The impact of technology upon in situ atmospheric observations and climate science. In Geography and Technology, Brunn SD, Cutter SL, Harrington Jr JW (eds). Kluwer Academic Publishers: Dordrecht, The Netherlands, 613 pp.
dc.identifier.citedreferenceWu Y, Raman S. 1998. The summertime Great Plains low level jet and the effect of its origin on moisture transport. Bound‐Layer Meteorol. 88 ( 3 ): 445 – 466.
dc.identifier.citedreferenceZhang D‐L, Zhang S, Weaver SJ. 2006. Low‐level jets over the Mid‐Atlantic States: warm‐season climatology and a case study. J. Appl. Meteorol. Climatol. 45: 194 – 209.
dc.identifier.citedreferenceZhong S, Fast JD, Bian X. 1996. A case study of the Great Plains low‐level jet using wind profiler network data and a high‐resolution mesoscale model. Mon. Weather Rev. 124: 785 – 806.
dc.identifier.citedreferenceAmador JA. 2008. The intra-Americas sea low‐level jet Overview and Future Research. Trends and Directions in Climate Research. Ann N. Y. Acad. Sci. 1146: 153 – 188, doi: 10.1196/annals.1446.012
dc.identifier.citedreferenceAnderson BT, Roads JO, Chen SC, Juang HMH. 2001. Model dynamics of summertime low‐level jets over northwestern Mexico. J. Geophys. Res. Atmos. 106: 3401 – 3413.
dc.identifier.citedreferenceAndreas EL, Claffey KJ, Makshtas AP. 2000. Low‐level atmospheric jets and inversions over the western Weddell Sea. Bound‐Layer Meteorol. 97: 459 – 486.
dc.identifier.citedreferenceArritt RW, Rink TD, Segal M, Todey DP, Clark CA, Mitchell MJ, Labas KM. 1997. The Great Plains low‐level jet during the warm season of 1993. Mon. Weather Rev. 125 ( 9 ): 2176 – 2192.
dc.identifier.citedreferenceAshok K, Behera SK, Rao SA, Wen H, Yamagata T. 2007. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112: C11007, doi: 10.1029/2006JC003798.
dc.identifier.citedreferenceAugustine JA, Caracena FC. 1994. Lower‐tropospheric precursors to nocturnal MCS development over the central United States. Weather Forecast. 9 ( 1 ): 116 – 135.
dc.identifier.citedreferenceBanta RM, Newsom RK, Lundquist JK, Pichugina YL, Coulter RL, Mahrt L. 2002. Nocturnal low‐level jet characteristics over Kansas during CASES‐99. Bound‐Layer Meteorol. 105: 221 – 252.
dc.identifier.citedreferenceBarnston AG, Livezey RE. 1987. Classification, seasonality and persistence of low‐frequency atmospheric circulation patterns. Mon. Weather Rev. 115: 1083 – 1126.
dc.identifier.citedreferenceBlackadar AK. 1957. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Am. Meteorol. Soc. 38: 282 – 290.
dc.identifier.citedreferenceBonner WD. 1968. Climatology of the low‐level jet. Mon. Weather Rev. 96: 833 – 850.
dc.identifier.citedreferenceBusinger S, Walter B. 1988. Comma cloud development and associated rapid cyclogenesis over the Gulf of Alaska: a case study using aircraft and operational data. Mon. Weather Rev. 116: 1103 – 1123.
dc.identifier.citedreferenceCook KH, Vizy EK. 2010. Hydrodynamics of the Caribbean low‐level jet and its relationship to precipitation. J. Clim. 23: 1477 – 1494.
dc.identifier.citedreferenceDoubler DL, Winkler JA, Bian X, Walters CK, Zhong S. 2015. A NARR‐derived climatology of southerly and northerly low‐level jets over North America and coastal environs. J. Appl. Meteorol. Climatol. 54: 1596 – 1619.
dc.identifier.citedreferenceDouglas MW. 1995. The summertime low‐level jet over the Gulf of California. Mon. Weather Rev. 123: 2334 – 2347.
dc.identifier.citedreferenceEnfield DB, Mestas‐Nunez AM, Trimble PJ. 2001. The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 28: 2077 – 2080.
dc.identifier.citedreferenceHarding KJ, Snyder PK. 2015. The relationship between the Pacific–North American teleconnection pattern, the Great Plains low‐level jet, and North Central U.S. heavy rainfall events. J. Clim. 28: 6729 – 6742.
dc.identifier.citedreferenceHolton JR. 1967. The diurnal boundary layer wind oscillation above sloping terrain. Tellus 19: 199 – 205.
dc.identifier.citedreferenceIgau RC, Nielson‐Gammon JW. 1998. Low‐level jet development during a numerically simulated return flow event. Mon. Weather Rev. 126: 2972 – 2990.
dc.identifier.citedreferenceJanjic ZI. 1994. The step‐mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122: 927 – 945.
dc.identifier.citedreferenceKanamitsu M, Ebisuzaki W, Woollen J, Yang S‐K, Hnilo JJ, Fiorino M, Potter GL. 2002. NCEP/DOE AMIP‐II reanalysis (R‐2). Bull. Am. Meteorol. Soc. 83: 1631 – 1643.
dc.identifier.citedreferenceKrishnamurthy L, Vecchi GA, Msadek R, Wrrtenberg A, Delworth TL, Zeng F. 2015. The seasonality of the Great Plains low‐level jet and ENSO relationship. J. Clim. 28: 4525 – 4544.
dc.identifier.citedreferenceLiang Y‐C, Yu J‐Y, Lo M‐H, Wang C. 2015. The changing influence of El Niño on the Great Plains low‐level jet. Atmos. Sci. Let. 16: 512 – 517, doi: 10.1002/assl.590.
dc.identifier.citedreferenceMantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78: 1069 – 1079.
dc.identifier.citedreferenceMesinger F, Janjic ZI, Nickovic S, Gavrilov D, Deaven DG. 1988. The step‐mountain coordinate‐model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon. Weather Rev. 116: 1493 – 1518.
dc.identifier.citedreferenceMesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W. 2006. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87: 343 – 360.
dc.identifier.citedreferenceMitchell MJ, Arritt RW, Labas K. 1995. A climatology of the warm season Great Plains low‐level jet using wind profiler observations. Weather Forecast. 10: 576 – 591.
dc.identifier.citedreferenceNielsen‐Gammon J. 2006. Project H‐45‐D‐2005 TAMU, Final Rep. 582‐4‐65587, Texas A&M Univ., Galveston, TX.
dc.identifier.citedreferenceRalph FM, Neiman PJ, Rotunno R. 2005. Dropsonde observations in low‐level jets over the northeastern Pacific Ocean from CALJET‐1998 and PACJET‐2001: Mean vertical‐profile and atmospheric‐river characteristics. Mon. Weather Rev. 133: 889 – 910.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.