Show simple item record

Breast Mass Characterization Using 3‐Dimensional Automated Ultrasound as an Adjunct to Digital Breast Tomosynthesis

dc.contributor.authorPadilla, Frederic
dc.contributor.authorRoubidoux, Marilyn A.
dc.contributor.authorParamagul, Chintana
dc.contributor.authorSinha, Sumedha P.
dc.contributor.authorGoodsitt, Mitchell M.
dc.contributor.authorLe Carpentier, Gerald L.
dc.contributor.authorChan, Heang-Ping
dc.contributor.authorHadjiiski, Lubomir M.
dc.contributor.authorFowlkes, J. Brian
dc.contributor.authorJoe, Annette D.
dc.contributor.authorKlein, Katherine A.
dc.contributor.authorNees, Alexis V.
dc.contributor.authorNoroozian, Mitra
dc.contributor.authorPatterson, Stephanie K.
dc.contributor.authorPinsky, Renee W.
dc.contributor.authorHooi, Fong Ming
dc.contributor.authorCarson, Paul L.
dc.date.accessioned2017-01-10T19:10:35Z
dc.date.available2017-01-10T19:10:35Z
dc.date.issued2013-01
dc.identifier.citationPadilla, Frederic; Roubidoux, Marilyn A.; Paramagul, Chintana; Sinha, Sumedha P.; Goodsitt, Mitchell M.; Le Carpentier, Gerald L.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Fowlkes, J. Brian; Joe, Annette D.; Klein, Katherine A.; Nees, Alexis V.; Noroozian, Mitra; Patterson, Stephanie K.; Pinsky, Renee W.; Hooi, Fong Ming; Carson, Paul L. (2013). "Breast Mass Characterization Using 3‐Dimensional Automated Ultrasound as an Adjunct to Digital Breast Tomosynthesis." Journal of Ultrasound in Medicine 32(1): 93-104.
dc.identifier.issn0278-4297
dc.identifier.issn1550-9613
dc.identifier.urihttps://hdl.handle.net/2027.42/135628
dc.publisherAmerican Institute of Ultrasound in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherautomated ultrasound
dc.subject.otherbreast
dc.subject.otherreader study
dc.subject.othertomosynthesis
dc.titleBreast Mass Characterization Using 3‐Dimensional Automated Ultrasound as an Adjunct to Digital Breast Tomosynthesis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan USA
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135628/1/jum201332193.pdf
dc.identifier.doi10.7863/jum.2013.32.1.93
dc.identifier.sourceJournal of Ultrasound in Medicine
dc.identifier.citedreferenceWagner RF, Metz CE, Campbell G. Assessment of medical imaging systems and computer aids: a tutorial review. Acad Radiol 2007; 14: 723 – 748.
dc.identifier.citedreferenceBerg WA, Woel BS. Mammographic-sonographic correlation. Ultrasound Clin 2007; 1: 567 – 591.
dc.identifier.citedreferenceHelvie MA. Digital mammography imaging: breast tomosynthesis and advanced applications. Radiol Clin North Am 2010; 48: 917 – 929.
dc.identifier.citedreferenceGennaro G, Baldan E, Bezzon E. Clinical performance of digital breast tomosynthesis versus full-field digital mammography: preliminary results. Lect Notes Comput Sci 2008; 5116: 477 – 482.
dc.identifier.citedreferenceGood WF, Abrams GS, Catullo VJ. Digital breast tomosynthesis: a pilot observer study. AJR Am J Roentgenol 2008; 190: 865 – 869.
dc.identifier.citedreferencePoplack SP, Tosteson TD, Kogel CA, Nagy HM. Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR Am J Roentgenol 2007; 189: 616 – 623.
dc.identifier.citedreferenceAndersson I, Ikeda DM, Zackrisson S. Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. Eur Radiol 2008; 18: 2817 – 2825.
dc.identifier.citedreferenceHelvie MA, Roubidoux MA, Zhang Y. Tomosynthesis mammography versus conventional mammography: lesion detection and reader preference—initial experience. Paper presented at: Radiological Society of North America 92nd Scientific Assembly and Annual Meeting; November 26–December 1, 2006; Chicago, IL.
dc.identifier.citedreferenceLo J, Durham N, Orman J. Breast tomosynthesis: initial clinical experience with 100 human subjects. Paper presented at: Radiological Society of North America 92nd Scientific Assembly and Annual Meeting; November 26–December 1, 2006; Chicago, IL.
dc.identifier.citedreferenceHelvie MA, Roubidoux MA, Hadjiiski LM. Research digital tomosynthesis mammography: detection of T1 invasive breast carcinomas not diagnosed by conventional breast imaging or physical exam. Paper presented at: Radiological Society of North America 94th Scientific Assembly and Annual Meeting; November 30–December 5, 2008; Chicago, IL.
dc.identifier.citedreferenceHelvie MA, Hadjiiski LM, Goodsitt MM. Characterization of benign and malignant breast masses by digital breast tomosynthesis mammography. Paper presented at: Radiological Society of North America 94th Scientific Assembly and Annual Meeting; November 30–December 5, 2008; Chicago, IL.
dc.identifier.citedreferenceHelvie MA, Roubidoux MA, Hadjiiski LM. Tomosynthesis mammography vs conventional mammography: comparison of breast mass detection and characterization. Paper presented at: Radiological Society of North America 93rd Scientific Assembly and Annual Meeting; November 25–30, 2007; Chicago, IL.
dc.identifier.citedreferenceTeertstra HJ, Loo CE, van den Bosch MAAJ. Breast tomosynthesis in clinical practice: initial results. Eur Radiol 2010; 20: 16 – 24.
dc.identifier.citedreferenceZhang Y, Chan HP, Sahiner B. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis. Med Phys 2006; 33: 3781 – 3795.
dc.identifier.citedreferenceBooi RC, Krücker JF, Goodsitt MM. Evaluating thin compression paddles for mammographically compatible ultrasound. Ultrasound Med Biol 2007; 33: 472 – 482.
dc.identifier.citedreferenceKapur A, Carson PL, Eberhard J. Combination of digital mammography with semi-automated 3D breast ultrasound. Technol Cancer Res Treat 2004; 3: 325 – 334.
dc.identifier.citedreferenceBlane CE, Goodsitt MM, Grimm JC. New compression paddle for wire localization in mammography. Acad Radiol 2010; 17: 142 – 145.
dc.identifier.citedreferenceMetz CE. Some practical issues of experimental design and data analysis in radiological ROC studies. Invest Radiol 1989; 24: 234 – 245.
dc.identifier.citedreferenceDorfman DD, Berbaum KS, Metz CE. Receiver operating characteristic rating analysis: generalization to the population of readers and patients with the jackknife method. Invest Radiol 1992; 27: 723 – 731.
dc.identifier.citedreferencePesce LL, Metz CE. Reliable and computationally efficient maximum-likelihood estimation of “proper” binormal ROC curves. Acad Radiol 2007; 14: 814 – 829.
dc.identifier.citedreferenceBerg WA, Blume JD, Cormack JB. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 2008; 299: 2151 – 2163.
dc.identifier.citedreferenceDiekmann F, Bick U. Breast tomosynthesis. Semin Ultrasound CT MR 2011; 32: 281 – 287.
dc.identifier.citedreferenceHovanessian Larsen L, Wallman M, Johnson M. Can automated whole breast ultrasound replace hand-held ultrasound in a busy diagnostic breast center? Paper presented at: Radiological Society of North America 94th Scientific Assembly and Annual Meeting; November 30–December 5, 2008; Chicago, IL.
dc.identifier.citedreferenceCarson PL, Fouzaan Z, van der Spek S. Dual sided automated ultrasound system in the mammographic geometry. Paper presented at: IEEE International Ultrasonics Symposium; October 18–21, 2011; Orlando, FL.
dc.identifier.citedreferenceTozaki M, Isobe S, Yamaguchi M. Optimal scanning technique to cover the whole breast using an automated breast volume scanner. Jpn J Radiol 2010; 28: 325 – 328.
dc.identifier.citedreferenceCarson PL, Wang B, LeCarpentier GL. Local compression in automated breast ultrasound in the mammographic geometry. Paper presented at: 2010 IEEE International Ultrasonics Symposium; October 11–14, 2010; San Diego, CA.
dc.identifier.citedreferenceKolb TM, Lichy J, Newhouse JH. Occult cancer in women with dense breasts: detection with screening US—diagnostic yield and tumor characteristics. Radiology 1998; 207: 191 – 199.
dc.identifier.citedreferenceBerg WA. Rationale for a trial of screening breast ultrasound: American College of Radiology Imaging Network (ACRIN) 6666. AJR Am J Roentgenol 2003; 180: 1225 – 1228.
dc.identifier.citedreferenceHilton SV, Leopold GR, Olson LK, Willson SA. Real-time breast sonography: application in 300 consecutive patients. AJR Am J Roentgenol 1986; 147: 479 – 486.
dc.identifier.citedreferenceChang RF, Chang-Chien KC, Takada E. Rapid image stitching and computer-aided detection for multipass automated breast ultrasound. Med Phys 2010; 37: 2063 – 2073.
dc.identifier.citedreferenceIkedo Y, Fukuoka D, Hara T. Computerized mass detection in whole breast ultrasound images: reduction of false positives using bilateral subtraction technique [abstract]. In: Medical Imaging 2007: Computer-Aided Diagnosis, Proceedings of SPIE. Bellingham, WA: SPIE; 2007: 65142007.
dc.identifier.citedreferenceChan HP, Wei J, Zhang YH. Computer-aided detection of masses in digital tomosynthesis mammography: comparison of three approaches. Med Phys 2008; 35: 4087 – 4095.
dc.identifier.citedreferenceSinha SP, Roubidoux MA, Goodsitt MM, Hadjiyski LM, Thomenius KE, Carson PL. Time-efficient mass localization on automated breast ultrasound with dual-modality information [abstract]. J Ultrasound Med 2009; 28 ( suppl ): S40.
dc.identifier.citedreferenceChan HP, Wu YT, Sahiner B. Characterization of masses in digital breast tomosynthesis: comparison of machine learning in projection views and reconstructed slices. Med Phys 2010; 37: 3576 – 3586.
dc.identifier.citedreferenceGur D, Rockette HE, Armfield DR. Prevalence effect in a laboratory environment. Radiology 2003; 228: 10 – 14.
dc.identifier.citedreferenceKolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 2002; 225: 165 – 175.
dc.identifier.citedreferenceJackson VP. The role of US in breast imaging. Radiology 1990; 177: 305 – 311.
dc.identifier.citedreferenceSkaane P, Engedal K. Analysis of sonographic features in the differentiation of fibroadenoma and invasive ductal carcinoma. AJR Am J Roentgenol 1998; 170: 109 – 114.
dc.identifier.citedreferenceStavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 1995; 196: 123 – 134.
dc.identifier.citedreferenceTaylor KJ, Merritt C, Piccoli C. Ultrasound as a complement to mammography and breast examination to characterize breast masses. Ultrasound Med Biol 2002; 28: 19 – 26.
dc.identifier.citedreferenceKelly KM, Dean J, Comulada WS, Lee SJ. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol 2010; 20: 734 – 742.
dc.identifier.citedreferenceWenkel E, Heckmann M, Heinrich M. Automated breast ultrasound: lesion detection and BI-RADS classification—a pilot study. Rofo 2008; 180: 804 – 808.
dc.identifier.citedreferenceGoodsitt MM, Chan HP, Hadjiiski LM. Automated registration of volumes of interest for a combined x-ray tomosynthesis and ultrasound breast imaging system. Lect Notes Comput Sci 2008; 5116: 463 – 468.
dc.identifier.citedreferenceLi J, Goodsitt MM, Padilla F. Effect of a gel retainment dam on automated ultrasound coverage in a dual-modality breast imaging system. J Ultrasound Med 2010; 29: 1075 – 1081.
dc.identifier.citedreferenceSinha SP, Goodsitt MM, Roubidoux MA. Automated ultrasound scanning on a dual-modality breast imaging system: coverage and motion issues and solutions. J Ultrasound Med 2007; 26: 645 – 655.
dc.identifier.citedreferenceSinha SP, Roubidoux MA, Helvie MA. Multi-modality 3D breast imaging with x-ray tomosynthesis and automated ultrasound. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 1335 – 1338.
dc.identifier.citedreferenceKotsianos-Hermle D, Hiltawsky KM, Wirth S, Fischer T, Friese K, Reiser M. Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound. Eur J Radiol 2009; 71: 109 – 115.
dc.identifier.citedreferenceKotsianos-Hermle D, Wirth S, Fischer T, Hiltawsky KM, Reiser M. First clinical use of a standardized three-dimensional ultrasound for breast imaging. Eur J Radiol 2009; 71: 102 – 108.
dc.identifier.citedreferenceRichter K, Prihoda H, Heywang-Köbrunner SH, Hamm B. Description and first clinical use of a new system for combined mammography and automated clinical amplitude/velocity reconstructive imaging breast sonography. Invest Radiol 1997; 32: 19 – 28.
dc.identifier.citedreferenceRichter K, Willrodt RG, Opri F, Heywang-Köbrunner SH. Differentiation of breast lesions by measurements under craniocaudal and lateromedial compression using a new sonographic method. Invest Radiol 1996; 31: 401 – 414.
dc.identifier.citedreferenceCallahan KS, Borup DT, Johnson SA. Transmission breast ultrasound imaging: representative case studies of speed of sound and attenuation of sound computed tomographic images. Am J Clin Oncol 2007; 30: 458 – 459.
dc.identifier.citedreferenceSahiner B, Chan HP, Hadjiiski LM. Multi-modality CADx: ROC study of the effect on radiologists’ accuracy in characterizing breast masses on mammograms and 3D ultrasound images. Acad Radiol 2009; 16: 810 – 818.
dc.identifier.citedreferenceKelly KM, Dean J, Lee SJ, Comulada WS. Breast cancer detection: radiologists’ performance using mammography with and without automated whole-breast ultrasound. Eur Radiol 2010; 20: 2557 – 2564.
dc.identifier.citedreferenceConway WF, Hayes CW, Brewer WH. Occult breast masses: use of a mammographic localizing grid for US evaluation. Radiology 1991; 181: 143 – 146.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.