Show simple item record

Quantification of Ultrasound Correlation‐Based Flow Velocity Mapping and Edge Velocity Gradient Measurement

dc.contributor.authorPark, Dae Woo
dc.contributor.authorKruger, Grant H.
dc.contributor.authorRubin, Jonathan M.
dc.contributor.authorHamilton, James
dc.contributor.authorGottschalk, Paul
dc.contributor.authorDodde, Robert E.
dc.contributor.authorShih, Albert J.
dc.contributor.authorWeitzel, William F.
dc.date.accessioned2017-01-10T19:11:03Z
dc.date.available2017-01-10T19:11:03Z
dc.date.issued2013-10
dc.identifier.citationPark, Dae Woo; Kruger, Grant H.; Rubin, Jonathan M.; Hamilton, James; Gottschalk, Paul; Dodde, Robert E.; Shih, Albert J.; Weitzel, William F. (2013). "Quantification of Ultrasound Correlation‐Based Flow Velocity Mapping and Edge Velocity Gradient Measurement." Journal of Ultrasound in Medicine 32(10): 1815-1830.
dc.identifier.issn0278-4297
dc.identifier.issn1550-9613
dc.identifier.urihttps://hdl.handle.net/2027.42/135662
dc.publisherAmerican Institute of Ultrasound in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherblood flow
dc.subject.otherultrasound
dc.subject.otherspeckle tracking
dc.subject.otherdecorrelation
dc.titleQuantification of Ultrasound Correlation‐Based Flow Velocity Mapping and Edge Velocity Gradient Measurement
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartments of Mechanical Engineering and Anesthesiology, University of Michigan, Ann Arbor, Michigan USA
dc.contributor.affiliationumDepartment of Internal Medicine, Veterans Administration Hospital and University of Michigan, Ann Arbor, Michigan USA
dc.contributor.affiliationumDepartment Biomedical Engineering, University of Michigan, Ann Arbor, Michigan USA
dc.contributor.affiliationumDepartment of Radiology, University of Michigan, Ann Arbor, Michigan USA
dc.contributor.affiliationotherDepartment of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania USA
dc.contributor.affiliationotherEpsilon Imaging, Inc, Ann Arbor, Michigan USA
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135662/1/jum201332101815.pdf
dc.identifier.doi10.7863/ultra.32.10.1815
dc.identifier.sourceJournal of Ultrasound in Medicine
dc.identifier.citedreferencePapoulis A. Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill; 1965.
dc.identifier.citedreferenceBrands PJ, Hoeks APG, Hofstra L, Reneman RS. A noninvasive method to estimate wall shear rate using ultrasound. Ultrasound Med Biol 1995; 21: 171 – 185.
dc.identifier.citedreferenceSamijo SK, Willigers JM, Barkhuysen R. Wall shear stress in the common carotid artery as function of age and gender. Cardiovasc Res 1998; 39: 515 – 522.
dc.identifier.citedreferenceBambi G, Morganti T, Ricci S. A novel ultrasound instrument for investigation of arterial mechanics. Ultrasonics 2004; 42: 731 – 737.
dc.identifier.citedreferenceTortoli P, Morganti T, Bambi G, Palombo C, Ramnarine KV. Noninvasive simultaneous assessment of wall shear rate and wall distention in carotid arteries. Ultrasound Med Biol 2006; 32: 1661 – 1670.
dc.identifier.citedreferenceTrahey GE, Allison JW, von Ramm OT. Angle independent ultrasonic detection of blood flow. IEEE Trans Biomed Eng 1987; 34: 965 – 967.
dc.identifier.citedreferenceBohs LN, Friemel BH, Trahey GE. Experimental velocity profiles and volumetric flow via two-dimensional speckle tracking. Ultrasound Med Biol 1995; 21: 885 – 898.
dc.identifier.citedreferenceBohs LN, Geiman BJ, Anderson ME, Breit SM, Trahey GE. Ensemble tracking for 2D vector velocity measurement: experimental and initial clinical results. IEEE Trans Ultrason Ferroelectr Freq Control 1998; 45: 912 – 924.
dc.identifier.citedreferenceGallippi CM, Bohs LN, Aderson ME, Congdon AN, Trahey GE. Lateral blood velocity measurement in the carotid artery via speckle tracking. In: Proceedings of the 2001 IEEE Ultrasonics Symposium. Piscataway, NJ: Institute of Electrical and Electronics Engineers; 2001: 1451 – 1455.
dc.identifier.citedreferenceAoudi W, Liebgott H, Needles A, Yang V, Foster FS, Vray D. Estimation methods for flow imaging with high frequency ultrasound. Ultrasonics 2006; 44 (suppl 1): e135 – e140.
dc.identifier.citedreferenceLi W, van der Steen AFW, Lancée CT, Gussenhoven EJ, Nicolaas B. Temporal correlation of blood scattering signals in vivo from radiofrequency intravascular ultrasound. Ultrasound Med Biol 1996; 22: 583 – 590.
dc.identifier.citedreferenceLi W, van der Steen AFW, Lancée CT, Céspedes I, Nicolaas B. Blood flow imaging and volume flow quantitation with intravascular ultrasound. Ultrasound Med Biol 1998; 24: 203 – 214.
dc.identifier.citedreferenceBamber J, Hasan P, Cook-Martin G, Bush N. Parametric imaging of tissue shear and flow using B-scan decorrelation rate [abstract]. J Ultrasound Med 1988; 7 (suppl): S135.
dc.identifier.citedreferenceLi W, Lancée CT, Céspedes EI, van der Steen AF, Bom N. Decorrelation of intravascular echo signals: potentials for blood velocity estimation. J Acoust Soc Am 1997; 102: 3785 – 3794.
dc.identifier.citedreferenceChen JF, Fowlkes JB, Carson PL, Rubin JM, Adler RS. Autocorrelation of integrated power Doppler signals and its application. Ultrasound Med Biol 1996; 22: 1053 – 1057.
dc.identifier.citedreferenceTuthill TA, Krücker JF, Fowlkes JB, Carson PL. Automated three-dimensional US frame positioning computed from elevational speckle decorrelation. Radiology 1998; 209: 575 – 582.
dc.identifier.citedreferenceFowlkes JB, Carson PL, Moskalik A, Chen JF, Rubin JM, inventors. Method and apparatus for composition and display of three-dimensional image from two-dimensional ultrasound scan data. US Patent 6,059,727. 2000.
dc.identifier.citedreferenceRubin JM, Fowlkes JB, Tuthill TA. Speckle decorrelation flow measurement with B-mode US of contrast agent flow in a phantom and in rabbit kidney. Radiology 1999; 213: 429 – 437.
dc.identifier.citedreferenceRubin JM, Tuthill TA, Fowlkes JB. Volume flow measurement using Doppler and grey-scale decorrelation. Ultrasound Med Biol 2001; 27: 101 – 109.
dc.identifier.citedreferenceCarson PL, Johnson ML, Holmes JH. Image quality and practicality of scanning large abdomens with large, low frequency and smaller, high frequency transducers. In: White D, Lyons EA (eds). Ultrasound in Medicine.Vol 4. New York, NY: Plenum Press; 1978: 161 – 162.
dc.identifier.citedreferenceBanjavic RA, Zagzebski JA, Madsen EL, Jutila RE. Ultrasound beam sensitivity profile changes in mammalian tissue. In: White D, Lyons EA (eds). Ultrasound in Medicine. Vol 4. New York, NY: Plenum Press 1978: 515 – 518.
dc.identifier.citedreferenceAdler RS, Rubin JM, Fowlkes JB, Carson PL, Pallister JE. Ultrasonic estimation of tissue perfusion: a stochastic approach. Ultrasound Med Biol 1995; 21: 493 – 500.
dc.identifier.citedreferenceOosterveld BJ, Thijssen JM, Verhoef WA. Texture of B-mode echograms: 3-D simulations and experiments of the effects of diffraction and scatterer density. Ultrasound Imaging 1985; 7: 142 – 160.
dc.identifier.citedreferenceWidmaier EP, Raff H, Strang KT. Vander’s Human Physiology. New York, NY: McGraw Hill; 2006.
dc.identifier.citedreferenceOthman NS, Jaafar MS, Rahman AA, Othman ES, Rozlan AA. Ultrasound speed of polymer gel mimicked human soft tissue within three weeks. Int J Biosci Biochem Bioinform 2011; 1: 223 – 225.
dc.identifier.citedreferenceShung KK. Diagnostic Ultrasound: Imaging and Blood Flow Measurements. Boca Raton, FL: CRC Press; 2006.
dc.identifier.citedreferenceMoshfeghi M, Waag RC. In vivo and in vitro ultrasound beam distortion measurements of a large aperture and a conventional aperture focussed transducer. Ultrasound Med Biol 1988; 14: 415 – 428.
dc.identifier.citedreferenceLubinski MA, Emelianov SY, O’Donnell M. Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. IEEE Trans Ultrason Ferroelectr Freq Control 1999; 46: 82 – 96.
dc.identifier.citedreferencePark DW, Kruger GH, Rubin JM. In vivo vascular wall shear rate and circumferential strain of renal disease patients. Ultrasound Med Biol 2012; 39: 241 – 252.
dc.identifier.citedreferenceZhao H, Song P, Urban MW, Greenleaf JF, Chen S. Shear wave speed measurement using an unfocused ultrasound beam. Ultrasound Med Biol 2012; 38: 1646 – 1655.
dc.identifier.citedreferenceAdrian RJ, Westerweel J. Particle Imaging Velocimetry. Cambridge, England: Cambridge University Press; 2010.
dc.identifier.citedreferenceKu DN. Blood flow in arteries. Annu Rev Fluid Mech 1997; 29: 399 – 434.
dc.identifier.citedreferenceKroll MH, Hellums JD, Mcintire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood 1996; 88: 1525 – 1541.
dc.identifier.citedreferenceVennemann P, Lindken R, Westerweel J. In vivo whole-field blood velocity measurement techniques. Exp Fluids 2007; 42: 495 – 511.
dc.identifier.citedreferenceGill RW. Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 1985; 11: 625 – 641.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.