Show simple item record

Growth Kinetics in Layer‐by‐Layer Assemblies of Organic Nanoparticles and Polyelectrolytes

dc.contributor.authorMohammadi, Maziar
dc.contributor.authorSalehi, Ali
dc.contributor.authorBranch, Ryan J.
dc.contributor.authorCygan, Lucas J.
dc.contributor.authorBesirli, Cagri G.
dc.contributor.authorLarson, Ronald G.
dc.date.accessioned2017-01-10T19:11:07Z
dc.date.available2018-03-01T16:43:50Zen
dc.date.issued2017-01-04
dc.identifier.citationMohammadi, Maziar; Salehi, Ali; Branch, Ryan J.; Cygan, Lucas J.; Besirli, Cagri G.; Larson, Ronald G. (2017). "Growth Kinetics in Layer‐by‐Layer Assemblies of Organic Nanoparticles and Polyelectrolytes." ChemPhysChem 18(1): 128-141.
dc.identifier.issn1439-4235
dc.identifier.issn1439-7641
dc.identifier.urihttps://hdl.handle.net/2027.42/135666
dc.description.abstractThe growth rates of layer‐by‐layer (LbL) assemblies of polyelectrolytes (PEs) with oppositely charged polystyrene (PS) nanoparticles (NPs) as a function of molecular weight (MW) of the PEs, ionic strength of the media, and NP size and charge are systematically investigated. To optimize LbL growth, the effects of suspension concentration, pH of the media, and deposition time on the growth rate of multilayers are assessed. Both linear and exponential growth behaviors are observed and, under optimal conditions, films of up to around 1 μm thick can readily be assembled after 10 or so bilayers have been deposited. For many of the cases studied, an intermediate MW of PE leads to the fastest film buildup, for both cationic poly(ethyleneimine) deposited alternately with anionic PS NPs and for anionic poly(acrylic acid) deposited alternately with cationic PS NPs. The existence of an optimal MW suggests that growth rate is determined by a balance of thermodynamic factors, including density of polymer bridges between particles, and kinetic factors, specifically the diffusivity of polymer in the film. The optimal MW, however, is very sensitive to the materials used. Moreover, depending on the MW of the PE, increasing salinity could increase or decrease the growth kinetics. Finally, the surface morphology of the films is characterized with AFM and SEM to reveal that the roughness increases less than linearly with film thickness.Growth factors: The growth rates of layer‐by‐layer (LbL) assemblies of polyelectrolytes (PEs) with oppositely charged polystyrene nanoparticles are systematically investigated. The molecular weight of a PE has a considerable effect on LbL film growth and its surface morphology (see figure).
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherthin films
dc.subject.otherkinetics
dc.subject.othernanoparticles
dc.subject.otherpolymers
dc.subject.othersurface analysis
dc.titleGrowth Kinetics in Layer‐by‐Layer Assemblies of Organic Nanoparticles and Polyelectrolytes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135666/1/cphc201600789_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135666/2/cphc201600789-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135666/3/cphc201600789.pdf
dc.identifier.doi10.1002/cphc.201600789
dc.identifier.sourceChemPhysChem
dc.identifier.citedreferenceA. Ostendorf, C. Cramer, G. Decher, M. Schönhoff, J. Phys. Chem. C 2015, 119, 9543 – 9549.
dc.identifier.citedreferenceW. Zhao, J. J. Xu, C. G. Shi, H. Y. Chen, Langmuir 2005, 21, 9630 – 9634.
dc.identifier.citedreferenceJ. Ma, P. Cai, W. Qi, D. Kong, H. Wang, Colloids Surf. A 2013, 426, 6 – 11.
dc.identifier.citedreferenceK. R. Knowles, C. C. Hanson, A. L. Fogel, B. Warhol, D. A. Rider, ACS Appl. Mater. Interfaces 2012, 4, 3575 – 3583.
dc.identifier.citedreferenceS. T. Dubas, P. Kumlangdudsana, P. Potiyaraj, Colloids Surf. A 2006, 289, 105 – 109.
dc.identifier.citedreferenceS. T. Dubas, S. Wacharanad, P. Potiyaraj, Colloids Surf. A 2011, 380, 25 – 28.
dc.identifier.citedreferenceP. Nestler, M. Paßvogel, C. A. Helm, Macromolecules 2013, 46, 5622 – 5629.
dc.identifier.citedreferenceL. Shen, P. Chaudouet, J. Ji, C. Picart, Biomacromolecules 2011, 12, 1322 – 1331.
dc.identifier.citedreferenceJ. Yu, O. Sanyal, A. P. Izbicki, I. Lee, Macromol. Rapid Commun. 2015, 36, 1669 – 1674.
dc.identifier.citedreferenceX. Zan, D. A. Hoagland, T. Wang, B. Peng, Z. Su, Polymer 2012, 53, 5109 – 5115.
dc.identifier.citedreferenceM. Rahman, F. Tajabadi, L. Shooshtari, N. Taghavinia, ChemPhysChem 2011, 12, 966 – 973.
dc.identifier.citedreferenceA. Salehi, P. S. Desai, J. Li, C. A. Steele, R. G. Larson, Macromolecules 2015, 48, 400 – 409.
dc.identifier.citedreferenceP. Bieker, M. Schönhoff, Macromolecules 2010, 43, 5052 – 5059.
dc.identifier.citedreferenceC. Peng, Y. S. Thio, R. A. Gerhardt, H. Ambaye, V. Lauter, Chem. Mater. 2011, 23, 4548 – 4556.
dc.identifier.citedreferenceS. Ghannoum, Y. Xin, J. Jaber, L. I. Halaoui, Langmuir 2003, 19, 4804 – 4811.
dc.identifier.citedreferenceT. Sennerfors, G. Bogdanovic, F. Tiberg, Langmuir 2002, 18, 6410 – 6415.
dc.identifier.citedreferenceY. Lvov, K. Ariga, M. Onda, I. Ichinose, T. Kunitake, Langmuir 1997, 13, 6195 – 6203.
dc.identifier.citedreferenceJ. Choi, M. F. Rubner, Macromolecules 2005, 38, 116 – 124.
dc.identifier.citedreferenceA. I. Petrov, A. A. Antipov, G. B. Sukhorukov, Macromolecules 2003, 36, 10079 – 10086.
dc.identifier.citedreferenceM. Rubinstein, R. H. Colby, Polymer Physics, Oxford University Press, Oxford 2003.
dc.identifier.citedreferenceQ. Wang, Macromolecules 2005, 38, 8911 – 8922.
dc.identifier.citedreferenceC. Picart, J. Mutterer, L. Richert, Y. Luo, G. Prestwich, P. Schaaf, J. C. Voegel, P. Lavalle, Proc. Natl. Acad. Sci. USA 2002, 99, 12531 – 12535.
dc.identifier.citedreferenceM. Rief, F. Oesterhelt, B. Heymann, H. E. Gaub, Science 1997, 275, 1295 – 1297.
dc.identifier.citedreferenceSupplier, private communication, 2016.
dc.identifier.citedreferenceG. Sauerbrey, Z. Phys. 1959, 155, 206 – 222.
dc.identifier.citedreferenceQCM200 Quartz Crystal Microbalance Digital Controller QCM225, 205 MHz Crystal Oscillator, Stanford Research Systems.
dc.identifier.citedreferenceI. Tokarev, S. Minko, Soft Matter 2009, 5, 511 – 524.
dc.identifier.citedreferenceB. K. Kayaoglu, İ. Gocek, H. Kizil, L. Trabzon, Tekst. Muhendis 2012, 19, 39 – 47.
dc.identifier.citedreferenceM. Rahman, N. Taghavinia, Eur. Phys. J. 2009, 48, 10602.
dc.identifier.citedreferenceM. M. De Villiers, D. P. Otto, S. J. Strydom, Y. M. Lvov, Adv. Drug Delivery Rev. 2011, 63, 701 – 715.
dc.identifier.citedreferenceR. Kniprath, S. Duhm, H. Glowatzki, N. Koch, S. Rogaschewski, J. Rabe, S. Kirstein, Langmuir 2007, 23, 9860 – 9865.
dc.identifier.citedreferenceJ. Borges, J. F. Mano, Chem. Rev. 2014, 114, 8883 – 8942.
dc.identifier.citedreferenceJ. P. Chapel, J. F. Berret, Curr. Opin. Colloid Interface Sci. 2012, 17, 97 – 105.
dc.identifier.citedreferenceR. R. Costa, J. F. Mano, Chem. Soc. Rev. 2014, 43, 3453 – 3479.
dc.identifier.citedreferenceC. Liang, H. Li, Y. Tao, X. Zhou, Z. Yang, Y. Xiao, F. Li, B. Han, Q. Chen, J. Mater. Sci. 2012, 23, 1097 – 1107.
dc.identifier.citedreferenceK. Na, S. Kim, K. Park, K. Kim, D. G. Woo, I. C. Kwon, H. M. Chung, K. H. Park, J. Am. Chem. Soc. 2007, 129, 5788 – 5789.
dc.identifier.citedreferenceN. Vrana, O. Erdemli, G. Francius, A. Fahs, M. Rabineau, C. Debry, A. Tezcaner, D. Keskin, P. Lavalle, J. Mater. Chem. B 2014, 2, 999 – 1008.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.