Show simple item record

BMP Signaling Mediated by BMPR1A in Osteoclasts Negatively Regulates Osteoblast Mineralization Through Suppression of Cx43

dc.contributor.authorShi, Ce
dc.contributor.authorZhang, Honghao
dc.contributor.authorLouie, Ke’ale
dc.contributor.authorMishina, Yuji
dc.contributor.authorSun, Hongchen
dc.date.accessioned2017-01-10T19:11:09Z
dc.date.available2018-05-04T20:56:57Zen
dc.date.issued2017-03
dc.identifier.citationShi, Ce; Zhang, Honghao; Louie, Ke’ale; Mishina, Yuji; Sun, Hongchen (2017). "BMP Signaling Mediated by BMPR1A in Osteoclasts Negatively Regulates Osteoblast Mineralization Through Suppression of Cx43." Journal of Cellular Biochemistry 118(3): 605-614.
dc.identifier.issn0730-2312
dc.identifier.issn1097-4644
dc.identifier.urihttps://hdl.handle.net/2027.42/135668
dc.description.abstractOsteoblasts and osteoclasts are well orchestrated through different mechanisms of communication during bone remodeling. Previously, we found that osteoclast‐specific disruption of one of the BMP receptors, Bmpr1a, results in increased osteoblastic bone formation in mice. We hypothesized that BMPR1A signaling in osteoclasts regulates production of either membrane bound proteins or secreted molecules that regulated osteoblast differentiation. In our current study, we co‐cultured wild‐type osteoblasts with either control osteoclasts or osteoclasts lacking BMPR1A signaling activity. We found that loss of Bmpr1a in osteoclasts promoted osteoblast mineralization in vitro. Further, we found that the expression of Cx43/Gja1 in the mutant osteoclasts was increased, which encoded for one of the gap junction proteins connexin 43/gap junction alpha 1. Knockdown of Gja1 in the mutant osteoclasts for Bmpr1a reduced osteoblastic mineralization when co‐cultured. Our findings suggest that GJA1 may be one of the downstream targets of BMPR1A signaling in osteoclasts that mediates osteoclast–osteoblast communication during bone remodeling. J. Cell. Biochem. 118: 605–614, 2017. © 2016 Wiley Periodicals, Inc.Disruption of Bmpr1a in osteoclasts promoted osteoblast mineralization when co‐cultured. Up‐regulation of gap junction Cx43/Gja1 in mutant osteoclasts is responsible for the enhanced osteoblast function.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCONNEXIN 43/GJA1
dc.subject.otherBMPR1A
dc.subject.otherOSTEOCLAST
dc.subject.otherGAP JUNCTION
dc.subject.otherOSTEOBLAST
dc.titleBMP Signaling Mediated by BMPR1A in Osteoclasts Negatively Regulates Osteoblast Mineralization Through Suppression of Cx43
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135668/1/jcb25746_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135668/2/jcb25746.pdf
dc.identifier.doi10.1002/jcb.25746
dc.identifier.sourceJournal of Cellular Biochemistry
dc.identifier.citedreferenceO’Sullivan S, Naot D, Callon K, Porteous F, Horne A, Wattie D, Watson M, Cornish J, Browett P, Grey A. 2007. Imatinib promotes osteoblast differentiation by inhibiting PDGFR signaling and inhibits osteoclastogenesis by both direct and stromal cell‐dependent mechanisms. J Bone Miner Res 22: 1679 – 1689.
dc.identifier.citedreferenceLaird DW. 2006. Life cycle of connexins in health and disease. Biochem J 394: 527 – 543.
dc.identifier.citedreferenceLecanda F, Towler DA, Ziambaras K, Cheng SL, Koval M, Steinberg TH, Civitelli R. 1998. Gap junctional communication modulates gene expression in osteoblastic cells. Mol Biol Cell 9: 2249 – 2258.
dc.identifier.citedreferenceLecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R. 2000. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol 151: 931 – 944.
dc.identifier.citedreferenceLee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y. 2010. IL‐1 plays an important role in the bone metabolism under physiological conditions. Int Immunol 22: 805 – 816.
dc.identifier.citedreferenceLiu F, Fang F, Yuan H, Yang D, Chen Y, Williams L, Goldstein SA, Krebsbach PH, Guan JL. 2013. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res 28: 2414 – 2430.
dc.identifier.citedreferenceLiu L, Li Y, Lin J, Liang Q, Sheng X, Wu J, Huang R, Liu S, Li Y. 2010. Connexin43 interacts with Caveolin‐3 in the heart. Mol Biol Rep 37: 1685 – 1691.
dc.identifier.citedreferenceMeme W, Calvo CF, Froger N, Ezan P, Amigou E, Koulakoff A, Giaume C. 2006. Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: Potentiation by beta‐amyloid. FASEB J 20: 494 – 496.
dc.identifier.citedreferenceMinkoff R, Bales ES, Kerr CA, Struss WE. 1999. Antisense oligonucleotide blockade of connexin expression during embryonic bone formation: Evidence of functional compensation within a multigene family. Dev Genet 24: 43 – 56.
dc.identifier.citedreferenceMishina Y, Hanks MC, Miura S, Tallquist MD, Behringer RR. 2002. Generation of Bmpr/Alk3 conditional knockout mice. Genesis 32: 69 – 72.
dc.identifier.citedreferenceMishina Y, Suzuki A, Ueno N, Behringer RR. 1995. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 9: 3027 – 3037.
dc.identifier.citedreferenceOkamoto M, Murai J, Imai Y, Ikegami D, Kamiya N, Kato S, Mishina Y, Yoshikawa H, Tsumaki N. 2011. Conditional deletion of Bmpr1a in differentiated osteoclasts increases osteoblastic bone formation, increasing volume of remodeling bone in mice. J Bone Miner Res 26: 2511 – 2522.
dc.identifier.citedreferenceOta K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S, Oursler MJ. 2013. TGF‐beta induces Wnt10b in osteoclasts from female mice to enhance coupling to osteoblasts. Endocrinology 154: 3745 – 3752.
dc.identifier.citedreferenceRansjo M, Sahli J, Lie A. 2003. Expression of connexin 43 mRNA in microisolated murine osteoclasts and regulation of bone resorption in vitro by gap junction inhibitors. Biochem Biophys Res Commun 303: 1179 – 1185.
dc.identifier.citedreferenceRyu J, Kim HJ, Chang EJ, Huang H, Banno Y, Kim HH. 2006. Sphingosine 1‐phosphate as a regulator of osteoclast differentiation and osteoclast‐osteoblast coupling. EMBO J 25: 5840 – 5851.
dc.identifier.citedreferenceStains JP, Civitelli R. 2005. Gap junctions regulate extracellular signal‐regulated kinase signaling to affect gene transcription. Mol Biol Cell 16: 64 – 72.
dc.identifier.citedreferenceSternlieb M, Paul E, Donahue HJ, Zhang Y. 2012. Ablation of connexin 43 in osteoclasts leads to decreased in vivo osteoclastogenesis. J Bone Mineral Res 27: S53.
dc.identifier.citedreferenceTakeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, Ito M, Ikeda K. 2013. Osteoclast‐secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest 123: 3914 – 3924.
dc.identifier.citedreferenceWatkins M, Grimston SK, Norris JY, Guillotin B, Shaw A, Beniash E, Civitelli R. 2011. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell 22: 1240 – 1251.
dc.identifier.citedreferenceYang CR, Wang JH, Hsieh SL, Wang SM, Hsu TL, Lin WW. 2004. Decoy receptor 3 (DcR3) induces osteoclast formation from monocyte/macrophage lineage precursor cells. Cell Death Differ 11 ( Suppl 1 ): S97 – S107.
dc.identifier.citedreferenceYang W, Wang J, Moore DC, Liang H, Dooner M, Wu Q, Terek R, Chen Q, Ehrlich MG, Quesenberry PJ, Neel BG. 2013. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature 499: 491 – 495.
dc.identifier.citedreferenceYellowley CE, Li Z, Zhou Z, Jacobs CR, Donahue HJ. 2000. Functional gap junctions between osteocytic and osteoblastic cells. J Bone Miner Res 15: 209 – 217.
dc.identifier.citedreferenceYoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S. 2008. Interleukin‐6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF‐kappaB signaling pathways. J Biol Chem 283: 11535 – 11540.
dc.identifier.citedreferenceZhang W, Green C, Stott NS. 2002. Bone morphogenetic protein‐2 modulation of chondrogenic differentiation in vitro involves gap junction‐mediated intercellular communication. J Cell Physiol 193: 233 – 243.
dc.identifier.citedreferenceZhang Y, Paul EM, Sathyendra V, Davison A, Sharkey N, Bronson S, Srinivasan S, Gross TS, Donahue HJ. 2011. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS ONE 6: e23516.
dc.identifier.citedreferenceHayden JM, Mohan S, Baylink DJ. 1995. The insulin‐like growth factor system and the coupling of formation to resorption. Bone 17: 93S – 98S.
dc.identifier.citedreferenceAtanga E, Dolder S, Dauwalder T, Wetterwald A, Hofstetter W. 2011. TNFalpha inhibits the development of osteoclasts through osteoblast‐derived GM‐CSF. Bone 49: 1090 – 1100.
dc.identifier.citedreferenceBani‐Yaghoub M, Felker JM, Sans C, Naus CC. 2000. The effects of bone morphogenetic protein 2 and 4 (BMP2 and BMP4) on gap junctions during neurodevelopment. Exp Neurol 162: 13 – 26.
dc.identifier.citedreferenceBatra N, Kar R, Jiang JX. 2012. Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta 1818: 1909 – 1918.
dc.identifier.citedreferenceBivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun LR, Rhee Y, Bellido T, Plotkin LI. 2012. Cell autonomous requirement of connexin 43 for osteocyte survival: Consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res 27: 374 – 389.
dc.identifier.citedreferenceBonewald LF. 2011. The amazing osteocyte. J Bone Miner Res 26: 229 – 238.
dc.identifier.citedreferenceBoyle WJ, Simonet WS, Lacey DL. 2003. Osteoclast differentiation and activation. Nature 423: 337 – 342.
dc.identifier.citedreferenceChang H‐M, Cheng J‐C, Taylor E, Leung PC. 2014. Oocyte‐derived BMP15 but not GDF9 down‐regulates connexin43 expression and decreases gap junction intercellular communication activity in immortalized human granulosa cells. Mol Hum Reprod 20: 373 – 383.
dc.identifier.citedreferenceChang HM, Cheng JC, Leung PC. 2013. Theca‐derived BMP4 and BMP7 down‐regulate connexin43 expression and decrease gap junction intercellular communication activity in immortalized human granulosa cells. J Clin Endocrinol Metab 98: E437 – E445.
dc.identifier.citedreferenceChatterjee B, Meyer RA, Loredo GA, Coleman CM, Tuan R, Lo CW. 2003. BMP regulation of the mouse connexin43 promoter in osteoblastic cells and embryos. Cell Commun Adhes 10: 37 – 50.
dc.identifier.citedreferenceChung DJ, Castro CH, Watkins M, Stains JP, Chung MY, Szejnfeld VL, Willecke K, Theis M, Civitelli R. 2006. Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast‐specific deletion of connexin43. J Cell Sci 119: 4187 – 4198.
dc.identifier.citedreferenceDavy A, Bush JO, Soriano P. 2006. Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol 4: e315.
dc.identifier.citedreferenceDbouk HA, Mroue RM, El‐Sabban ME, Talhouk RS. 2009. Connexins: A myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 7: 4.
dc.identifier.citedreferenceDegeorge BR, Jr., Rosenberg M, Eckstein V, Gao E, Herzog N, Katus HA, Koch WJ, Frey N, Most P. 2008. BMP‐2 and FGF‐2 synergistically facilitate adoption of a cardiac phenotype in somatic bone marrow c‐kit+/Sca‐1+ stem cells. Clin Transl Sci 1: 116 – 125.
dc.identifier.citedreferenceDorshkind K, Green L, Godwin A, Fletcher WH. 1993. Connexin‐43‐type gap junctions mediate communication between bone marrow stromal cells. Blood 82: 38 – 45.
dc.identifier.citedreferenceDoty SB. 1981. Morphological evidence of gap junctions between bone cells. Calcif Tissue Int 33: 509 – 512.
dc.identifier.citedreferenceEdwards CM, Mundy GR. 2008. Eph receptors and ephrin signaling pathways: A role in bone homeostasis. Int J Med Sci 5: 263 – 272.
dc.identifier.citedreferenceGiepmans BN. 2004. Gap junctions and connexin‐interacting proteins. Cardiovasc Res 62: 233 – 245.
dc.identifier.citedreferenceGrano M, Galimi F, Zambonin G, Colucci S, Cottone E, Zallone AZ, Comoglio PM. 1996. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc Natl Acad Sci USA 93: 7644 – 7648.
dc.identifier.citedreferenceGrimston SK, Screen J, Haskell JH, Chung DJ, Brodt MD, Silva MJ, Civitelli R. 2006. Role of connexin43 in osteoblast response to physical load. Ann NY Acad Sci 1068: 214 – 224.
dc.identifier.citedreferenceHobolt‐Pedersen AS, Delaisse JM, Soe K. 2014. Osteoclast fusion is based on heterogeneity between fusion partners. Calcif Tissue Int 95: 73 – 82.
dc.identifier.citedreferenceHou J, Lu AL, Liu BW, Xing YJ, Da J, Hou ZL, Ai SY. 2013. Combination of BMP‐2 and 5‐AZA is advantageous in rat bone marrow‐derived mesenchymal stem cells differentiation into cardiomyocytes. Cell Biol Int 37: 1291 – 1299.
dc.identifier.citedreferenceIlvesaro J, Tavi P, Tuukkanen J. 2001. Connexin‐mimetic peptide Gap 27 decreases osteoclastic activity. BMC Musculoskelet Disord 2: 10.
dc.identifier.citedreferenceIlvesaro J, Tuukkanen J. 2003. Gap‐junctional regulation of osteoclast function. Crit Rev Eukaryot Gene Expr 13: 133 – 146.
dc.identifier.citedreferenceIlvesaro J, Vaananen K, Tuukkanen J. 2000. Bone‐resorbing osteoclasts contain gap‐junctional connexin‐43. J Bone Miner Res 15: 919 – 926.
dc.identifier.citedreferenceIrie N, Takada Y, Watanabe Y, Matsuzaki Y, Naruse C, Asano M, Iwakura Y, Suda T, Matsuo K. 2009. Bidirectional signaling through ephrinA2‐EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem 284: 14637 – 14644.
dc.identifier.citedreferenceKamiya N, Ye L, Kobayashi T, Lucas DJ, Mochida Y, Yamauchi M, Kronenberg HM, Feng JQ, Mishina Y. 2008. Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J Bone Miner Res 23: 2007 – 2017.
dc.identifier.citedreferenceKang S, Kumanogoh A. 2013. Semaphorins in bone development, homeostasis, and disease. Semin Cell Dev Biol 24: 163 – 171.
dc.identifier.citedreferenceKubota K, Sakikawa C, Katsumata M, Nakamura T, Wakabayashi K. 2002. Platelet‐derived growth factor BB secreted from osteoclasts acts as an osteoblastogenesis inhibitory factor. J Bone Miner Res 17: 257 – 265.
dc.identifier.citedreferenceKumar NM, Gilula NB. 1996. The gap junction communication channel. Cell 84: 381 – 388.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.