Show simple item record

Targeting breast cancer stem cells

dc.contributor.authorMcDermott, Sean P.
dc.contributor.authorWicha, Max S.
dc.date.accessioned2017-01-10T20:52:16Z
dc.date.available2017-01-10T20:52:16Z
dc.date.issued2010-10
dc.identifier.citation(2010). "Targeting breast cancer stem cells." Molecular Oncology 4(5): 404-419.
dc.identifier.issn1574-7891
dc.identifier.issn1878-0261
dc.identifier.urihttps://hdl.handle.net/2027.42/135704
dc.description.abstractThe cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self‐renewing CSC population that is also capable of differentiating into non‐self‐renewing cell populations that constitute the bulk of the tumor. Although, the CSC hypothesis does not directly address the cell of origin of cancer, it is postulated that tissue‐resident stem or progenitor cells are the most common targets of transformation. Clinically, CSCs are predicted to mediate tumor recurrence after chemo‐ and radiation‐therapy due to the relative inability of these modalities to effectively target CSCs. If this is the case, then CSC must be efficiently targeted to achieve a true cure. Similarities between normal and malignant stem cells, at the levels of cell‐surface proteins, molecular pathways, cell cycle quiescence, and microRNA signaling present challenges in developing CSC‐specific therapeutics. Approaches to targeting CSCs include the development of agents targeting known stem cell regulatory pathways as well as unbiased high‐throughput siRNA or small molecule screening. Based on studies of pathways present in normal stem cells, recent work has identified potential “Achilles heals” of CSC, whereas unbiased screening provides opportunities to identify new pathways utilized by CSC as well as develop potential therapeutic agents. Here, we review both approaches and their potential to effectively target breast CSC.
dc.publisherWiley Periodicals, Inc.
dc.publisherLittle Brown
dc.subject.otherBreast cancer
dc.subject.otherCancer stem cell (CSC)
dc.subject.otherNovel therapeutics
dc.titleTargeting breast cancer stem cells
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelHematology and Oncology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Internal Medicine, Division of Hematology and Oncology, University of Michigan Comprehensive Cancer Center, 1500 E Medical Center Dr, 6303 Comprehensive Cancer Center, Ann Arbor, 48109 MI, USA
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135704/1/mol2201045404.pdf
dc.identifier.doi10.1016/j.molonc.2010.06.005
dc.identifier.sourceMolecular Oncology
dc.identifier.citedreferenceRoesch, A., Fukunaga-Kalabis, M., Schmidt, E.C., Zabierowski, S.E., Brafford, P.A., Vultur, A., Basu, D., Gimotty, P., Vogt, T., Herlyn, M., 2010. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. 141, 583–594.
dc.identifier.citedreferenceWang, J.C., 2007. Evaluating therapeutic efficacy against cancer stem cells: new challenges posed by a new paradigm. Cell Stem Cell. 1, 497 – 501.
dc.identifier.citedreferenceWang, S., Garcia, A.J., Wu, M., Lawson, D.A., Witte, O.N., Wu, H., 2006. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc. Natl. Acad. Sci. USA. 103, 1480 – 1485.
dc.identifier.citedreferenceWang, Y., Baskerville, S., Shenoy, A., Babiarz, J.E., Baehner, L., Blelloch, R., 2008. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat. Genet. 40, 1478 – 1483.
dc.identifier.citedreferenceWang, Y., Schulte, B.A., LaRue, A.C., Ogawa, M., Zhou, D., 2006. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood. 107, 358 – 366.
dc.identifier.citedreferenceWatkins, D.N., Berman, D.M., Burkholder, S.G., Wang, B., Beachy, P.A., Baylin, S.B., 2003. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 422, 313 – 317.
dc.identifier.citedreferenceWei, G., Twomey, D., Lamb, J., Schlis, K., Agarwal, J., Stam, R.W., Opferman, J.T., Sallan, S.E., den Boer, M.L., Pieters, R., Golub, T.R., Armstrong, S.A., 2006. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 10, 331 – 342.
dc.identifier.citedreferenceWellner, U., Schubert, J., Burk, U.C., Schmalhofer, O., Zhu, F., Sonntag, A., Waldvogel, B., Vannier, C., Darling, D., zur Hausen, A., Brunton, V.G., Morton, J., Sansom, O., Schuler, J., Stemmler, M.P., Herzberger, C., Hopt, U., Keck, T., Brabletz, S., Brabletz, T., 2009. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11, 1487 – 1495.
dc.identifier.citedreferenceWeng, A.P., Ferrando, A.A., Lee, W., Morris, J.P.t., Silverman, L.B., Sanchez-Irizarry, C., Blacklow, S.C., Look, A.T., Aster, J.C., 2004. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 306, 269 – 271.
dc.identifier.citedreferenceWhitehead, K.A., Langer, R., Anderson, D.G., 2009. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129 – 138.
dc.identifier.citedreferenceWishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., Hassanali, M., 2008. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901 – D906.
dc.identifier.citedreferenceWoodward, W.A., Chen, M.S., Behbod, F., Alfaro, M.P., Buchholz, T.A., Rosen, J.M., 2007. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc. Natl. Acad. Sci. USA. 104, 618 – 623.
dc.identifier.citedreferenceWurdak, H., Zhu, S., Romero, A., Lorger, M., Watson, J., Chiang, C.Y., Zhang, J., Natu, V.S., Lairson, L.L., Walker, J.R., Trussell, C.M., Harsh, G.R., Vogel, H., Felding-Habermann, B., Orth, A.P., Miraglia, L.J., Rines, D.R., Skirboll, S.L., Schultz, P.G., 2010. An RNAi screen identifies TRRAP as a regulator of brain tumor-initiating cell differentiation. Cell Stem Cell. 6, 37 – 47.
dc.identifier.citedreferenceXu, N., Papagiannakopoulos, T., Pan, G., Thomson, J.A., Kosik, K.S., 2009. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 137, 647 – 658.
dc.identifier.citedreferenceYilmaz, O.H., Valdez, R., Theisen, B.K., Guo, W., Ferguson, D.O., Wu, H., Morrison, S.J., 2006. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 441, 475 – 482.
dc.identifier.citedreferenceYoung, L.J., Medina, D., DeOme, K.B., Daniel, C.W., 1971. The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp. Gerontol. 6, 49 – 56.
dc.identifier.citedreferenceYu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., Huang, Y., Hu, X., Su, F., Lieberman, J., Song, E., 2007. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 131, 1109 – 1123.
dc.identifier.citedreferenceZhang, J., Grindley, J.C., Yin, T., Jayasinghe, S., He, X.C., Ross, J.T., Haug, J.S., Rupp, D., Porter-Westpfahl, K.S., Wiedemann, L.M., Wu, H., Li, L., 2006. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. 441, 518 – 522.
dc.identifier.citedreferenceZhang, M., Behbod, F., Atkinson, R.L., Landis, M.D., Kittrell, F., Edwards, D., Medina, D., Tsimelzon, A., Hilsenbeck, S., Green, J.E., Michalowska, A.M., Rosen, J.M., 2008. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res. 68, 4674 – 4682.
dc.identifier.citedreferenceFuchs, D., Heinold, A., Opelz, G., Daniel, V., Naujokat, C., 2009. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem. Biophys. Res. Commun. 390, 743 – 749.
dc.identifier.citedreferenceAbratt, R.P., Brune, D., Dimopoulos, M.A., Kliment, J., Breza, J., Selvaggi, F.P., Beuzeboc, P., Demkow, T., Oudard, S., 2004. Randomised phase III study of intravenous vinorelbine plus hormone therapy versus hormone therapy alone in hormone-refractory prostate cancer. Ann. Oncol. 15, 1613 – 1621.
dc.identifier.citedreferenceAgis, H., Jaeger, E., Doninger, B., Sillaber, C., Marosi, C., Drach, J., Schwarzinger, I., Valent, P., Oehler, L., 2006. In vivo effects of imatinib mesylate on human haematopoietic progenitor cells. Eur. J. Clin. Invest. 36, 402 – 408.
dc.identifier.citedreferenceAl-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F., 2003. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA. 100, 3983 – 3988.
dc.identifier.citedreferenceBao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., Rich, J.N., 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444, 756 – 760.
dc.identifier.citedreferenceBartel, D.P., 2009. MicroRNAs: target recognition and regulatory functions. Cell. 136, 215 – 233.
dc.identifier.citedreferenceBonner, W.A., Hulett, H.R., Sweet, R.G., Herzenberg, L.A., 1972. Fluorescence activated cell sorting. Rev. Sci. Instrum. 43, 404 – 409.
dc.identifier.citedreferenceBonnet, D., Dick, J.E., 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730 – 737.
dc.identifier.citedreferenceBooth, B., Zemmel, R., 2004. Prospects for productivity. Nat. Rev. Drug Discov. 3, 451 – 456.
dc.identifier.citedreferenceBouras, T., Pal, B., Vaillant, F., Harburg, G., Asselin-Labat, M.L., Oakes, S.R., Lindeman, G.J., Visvader, J.E., 2008. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 3, 429 – 441.
dc.identifier.citedreferenceBrabletz, T., Jung, A., Spaderna, S., Hlubek, F., Kirchner, T., 2005. Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat. Rev. Cancer. 5, 744 – 749.
dc.identifier.citedreferenceBracken, C.P., Gregory, P.A., Kolesnikoff, N., Bert, A.G., Wang, J., Shannon, M.F., Goodall, G.J., 2008. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial–mesenchymal transition. Cancer Res. 68, 7846 – 7854.
dc.identifier.citedreferenceBray, S.J., 2006. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678 – 689.
dc.identifier.citedreferenceCampillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J., Bork, P., 2008. Drug target identification using side-effect similarity. Science. 321, 263 – 266.
dc.identifier.citedreferenceCharafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P., Hur, M.H., Diebel, M.E., Monville, F., Dutcher, J., Brown, M., Viens, P., Xerri, L., Bertucci, F., Stassi, G., Dontu, G., Birnbaum, D., Wicha, M.S., 2009. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 69, 1302 – 1313.
dc.identifier.citedreferenceChen, S.T., Dou, J., Temple, R., Agarwal, R., Wu, K.M., Walker, S., 2008. New therapies from old medicines. Nat. Biotechnol. 26, 1077 – 1083.
dc.identifier.citedreferenceCho, R.W., Wang, X., Diehn, M., Shedden, K., Chen, G.Y., Sherlock, G., Gurney, A., Lewicki, J., Clarke, M.F., 2008. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells. 26, 364 – 371.
dc.identifier.citedreferenceChong, C.R., Sullivan, D.J., 2007. New uses for old drugs. Nature. 448, 645 – 646.
dc.identifier.citedreferenceChung, N., Zhang, X.D., Kreamer, A., Locco, L., Kuan, P.F., Bartz, S., Linsley, P.S., Ferrer, M., Strulovici, B., 2008. Median absolute deviation to improve hit selection for genome-scale RNAi screens. J. Biomol. Screen. 13, 149 – 158.
dc.identifier.citedreferenceCicalese, A., Bonizzi, G., Pasi, C.E., Faretta, M., Ronzoni, S., Giulini, B., Brisken, C., Minucci, S., Di Fiore, P.P., Pelicci, P.G., 2009. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 138, 1083 – 1095.
dc.identifier.citedreferenceClarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L., Wahl, G.M., 2006. Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 66, 9339 – 9344.
dc.identifier.citedreferenceClarke, R.B., Anderson, E., Howell, A., Potten, C.S., 2003. Regulation of human breast epithelial stem cells. Cell Prolif. 36, ( Suppl. 1 ) 45 – 58.
dc.identifier.citedreferenceClarke, R.B., Spence, K., Anderson, E., Howell, A., Okano, H., Potten, C.S., 2005. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev. Biol. 277, 443 – 456.
dc.identifier.citedreferenceClarkson, B., Fried, J., Strife, A., Sakai, Y., Ota, K., Okita, T., 1970. Studies of cellular proliferation in human leukemia. 3. Behavior of leukemic cells in three adults with acute leukemia given continuous infusions of 3H-thymidine for 8 or 10 days. Cancer. 25, 1237 – 1260.
dc.identifier.citedreferenceClarkson, B.D., 1969. Review of recent studies of cellular proliferation in acute leukemia. Natl. Cancer Inst. Monogr. 30, 81 – 120.
dc.identifier.citedreferenceClarkson, B.D., Fried, J., 1971. Changing concepts of treatment in acute leukemia. Med. Clin. North Am. 55, 561 – 600.
dc.identifier.citedreferenceCozzio, A., Passegue, E., Ayton, P.M., Karsunky, H., Cleary, M.L., Weissman, I.L., 2003. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029 – 3035.
dc.identifier.citedreferenceCreighton, C.J., Li, X., Landis, M., Dixon, J.M., Neumeister, V.M., Sjolund, A., Rimm, D.L., Wong, H., Rodriguez, A., Herschkowitz, J.I., Fan, C., Zhang, X., He, X., Pavlick, A., Gutierrez, M.C., Renshaw, L., Larionov, A.A., Faratian, D., Hilsenbeck, S.G., Perou, C.M., Lewis, M.T., Rosen, J.M., Chang, J.C., 2009. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA. 106, 13820 – 13825.
dc.identifier.citedreferenceDaniel, C.W., De Ome, K.B., Young, J.T., Blair, P.B., Faulkin, L.J., 1968. The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc. Natl. Acad. Sci. USA. 61, 53 – 60.
dc.identifier.citedreferenceDaniel, C.W., Young, L.J., 1971. Influence of cell division on an aging process. Life span of mouse mammary epithelium during serial propagation in vivo. Exp. Cell Res. 65, 27 – 32.
dc.identifier.citedreferenceDaniel, D., Crawford, J., 2006. Myelotoxicity from chemotherapy. Semin. Oncol. 33, 74 – 85.
dc.identifier.citedreferenceDekaney, C.M., Gulati, A.S., Garrison, A.P., Helmrath, M.A., Henning, S.J., 2009. Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G461 – G470.
dc.identifier.citedreferenceDeng, G., Lu, Y., Zlotnikov, G., Thor, A.D., Smith, H.S., 1996. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science. 274, 2057 – 2059.
dc.identifier.citedreferenceDeOme, K.B., Fauklin, L.J., Bern, H.A., Blair, P.B., 1959. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H. J. Natl. Cancer Inst. 78, 751 – 757.
dc.identifier.citedreferenceDiamandis, P., Wildenhain, J., Clarke, I.D., Sacher, A.G., Graham, J., Bellows, D.S., Ling, E.K., Ward, R.J., Jamieson, L.G., Tyers, M., Dirks, P.B., 2007. Chemical genetics reveals a complex functional ground state of neural stem cells. Nat. Chem. Biol. 3, 268 – 273.
dc.identifier.citedreferenceDick, J.E., 2003. Stem cells: self-renewal writ in blood. Nature. 423, 231 – 233.
dc.identifier.citedreferenceDick, J.E., 2008. Stem cell concepts renew cancer research. Blood. 112, 4793 – 4807.
dc.identifier.citedreferenceDierks, C., Beigi, R., Guo, G.R., Zirlik, K., Stegert, M.R., Manley, P., Trussell, C., Schmitt-Graeff, A., Landwerlin, K., Veelken, H., Warmuth, M., 2008. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell. 14, 238 – 249.
dc.identifier.citedreferenceDontu, G., Abdallah, W.M., Foley, J.M., Jackson, K.W., Clarke, M.F., Kawamura, M.J., Wicha, M.S., 2003. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253 – 1270.
dc.identifier.citedreferenceDontu, G., Jackson, K.W., McNicholas, E., Kawamura, M.J., Abdallah, W.M., Wicha, M.S., 2004. Role of notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6, R605 – R615.
dc.identifier.citedreferenceEberhard, Y., McDermott, S.P., Wang, X., Gronda, M., Venugopal, A., Wood, T.E., Hurren, R., Datti, A., Batey, R.A., Wrana, J., Antholine, W.E., Dick, J., Schimmer, A.D., 2009. Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood. 114, 3064 – 3073.
dc.identifier.citedreferenceEirew, P., Stingl, J., Raouf, A., Turashvili, G., Aparicio, S., Emerman, J.T., Eaves, C.J., 2008. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat. Med. 14, 1384 – 1389.
dc.identifier.citedreferenceEisenhauer, E.A., Therasse, P., Bogaerts, J., Schwartz, L.H., Sargent, D., Ford, R., Dancey, J., Arbuck, S., Gwyther, S., Mooney, M., Rubinstein, L., Shankar, L., Dodd, L., Kaplan, R., Lacombe, D., Verweij, J., 2009. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 45, 228 – 247.
dc.identifier.citedreferenceEng, C., 2003. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183 – 198.
dc.identifier.citedreferenceFire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391, 806 – 811.
dc.identifier.citedreferenceFurth, J., Kahn, M., 1937. The transmission of leukemia of mice with a single cell. Am. J. Cancer. 31, 276 – 282.
dc.identifier.citedreferenceGinestier, C., Hur, M.H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., Jacquemier, J., Viens, P., Kleer, C.G., Liu, S., Schott, A., Hayes, D., Birnbaum, D., Wicha, M.S., Dontu, G., 2007. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1, 555 – 567.
dc.identifier.citedreferenceGinestier, C., Liu, S., Diebel, M.E., Korkaya, H., Luo, M., Brown, M., Wicinski, J., Cabaud, O., Charafe-Jauffret, E., Birnbaum, D., Guan, J.L., Dontu, G., Wicha, M.S., 2010. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J. Clin. Invest.
dc.identifier.citedreferenceGinestier, C., Liu, S., Wicha, M.S., 2009. Getting to the root of BRCA1-deficient breast cancer. Cell Stem Cell. 5, 229 – 230.
dc.identifier.citedreferenceGonzalez, C., 2007. Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nat. Rev. Genet. 8, 462 – 472.
dc.identifier.citedreferenceGreene, S.B., Gunaratne, P.H., Hammond, S.M., Rosen, J.M., 2010. A putative role for microRNA-205 in mammary epithelial cell progenitors. J. Cell Sci.
dc.identifier.citedreferenceGregory, P.A., Bert, A.G., Paterson, E.L., Barry, S.C., Tsykin, A., Farshid, G., Vadas, M.A., Khew-Goodall, Y., Goodall, G.J., 2008. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593 – 601.
dc.identifier.citedreferenceGriffiths-Jones, S., Saini, H.K., van Dongen, S., Enright, A.J., 2008. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154 – D158.
dc.identifier.citedreferenceGunther, S., Kuhn, M., Dunkel, M., Campillos, M., Senger, C., Petsalaki, E., Ahmed, J., Urdiales, E.G., Gewiess, A., Jensen, L.J., Schneider, R., Skoblo, R., Russell, R.B., Bourne, P.E., Bork, P., Preissner, R., 2008. Super target and matador: resources for exploring drug–target relationships. Nucleic Acids Res. 36, D919 – D922.
dc.identifier.citedreferenceGuo, W., Lasky, J.L., Chang, C.J., Mosessian, S., Lewis, X., Xiao, Y., Yeh, J.E., Chen, J.Y., Iruela-Arispe, M.L., Varella-Garcia, M., Wu, H., 2008. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature. 453, 529 – 533.
dc.identifier.citedreferenceGupta, P.B., Onder, T.T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R.A., Lander, E.S., 2009. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 138, 645 – 659.
dc.identifier.citedreferenceGuzman, M.L., Neering, S.J., Upchurch, D., Grimes, B., Howard, D.S., Rizzieri, D.A., Luger, S.M., Jordan, C.T., 2001. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 98, 2301 – 2307.
dc.identifier.citedreferenceGuzman, M.L., Rossi, R.M., Karnischky, L., Li, X., Peterson, D.R., Howard, D.S., Jordan, C.T., 2005. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 105, 4163 – 4169.
dc.identifier.citedreferenceGuzman, M.L., Rossi, R.M., Neelakantan, S., Li, X., Corbett, C.A., Hassane, D.C., Becker, M.W., Bennett, J.M., Sullivan, E., Lachowicz, J.L., Vaughan, A., Sweeney, C.J., Matthews, W., Carroll, M., Liesveld, J.L., Crooks, P.A., Jordan, C.T., 2007. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood. 110, 4427 – 4435.
dc.identifier.citedreferenceHarrison, H., Farnie, G., Howell, S.J., Rock, R.E., Stylianou, S., Brennan, K.R., Bundred, N.J., Clarke, R.B., 2010. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 70, 709 – 718.
dc.identifier.citedreferenceHassane, D.C., Guzman, M.L., Corbett, C., Li, X., Abboud, R., Young, F., Liesveld, J.L., Carroll, M., Jordan, C.T., 2008. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood. 111, 5654 – 5662.
dc.identifier.citedreferenceHerschkowitz, J.I., He, X., Fan, C., Perou, C.M., 2008. The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res. 10, R75
dc.identifier.citedreferenceHerschkowitz, J.I., Simin, K., Weigman, V.J., Mikaelian, I., Usary, J., Hu, Z., Rasmussen, K.E., Jones, L.P., Assefnia, S., Chandrasekharan, S., Backlund, M.G., Yin, Y., Khramtsov, A.I., Bastein, R., Quackenbush, J., Glazer, R.I., Brown, P.H., Green, J.E., Kopelovich, L., Furth, P.A., Palazzo, J.P., Olopade, O.I., Bernard, P.S., Churchill, G.A., Van Dyke, T., Perou, C.M., 2007. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8, R76
dc.identifier.citedreferenceHill, R., Wu, H., 2009. PTEN, stem cells, and cancer stem cells. J. Biol. Chem. 284, 11755 – 11759.
dc.identifier.citedreferenceHollstein, M., Sidransky, D., Vogelstein, B., Harris, C.C., 1991. p53 mutations in human cancers. Science. 253, 49 – 53.
dc.identifier.citedreferenceHope, K.J., Jin, L., Dick, J.E., 2004. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol. 5, 738 – 743.
dc.identifier.citedreferenceHuff, C.A., Matsui, W., Smith, B.D., Jones, R.J., 2006. The paradox of response and survival in cancer therapeutics. Blood. 107, 431 – 434.
dc.identifier.citedreferenceHuntly, B.J.P., Shigematsu, H., Deguchi, K., Lee, B.H., Mizuno, S., Duclos, N., Rowan, R., Amaral, S., Curley, D., Williams, I.R., 2004. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 6, 587 – 596.
dc.identifier.citedreferenceIjiri, K., Potten, C.S., 1983. Response of intestinal cells of differing topographical and hierarchical status to ten cytotoxic drugs and five sources of radiation. Br. J. Cancer. 47, 175 – 185.
dc.identifier.citedreferenceIjiri, K., Potten, C.S., 1987. Further studies on the response of intestinal crypt cells of different hierarchical status to eighteen different cytotoxic agents. Br. J. Cancer. 55, 113 – 123.
dc.identifier.citedreferenceIorns, E., Lord, C.J., Turner, N., Ashworth, A., 2007. Utilizing RNA interference to enhance cancer drug discovery. Nat. Rev. Drug Discov. 6, 556 – 568.
dc.identifier.citedreferenceJackson, A.L., Linsley, P.S., 2010. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 9, 57 – 67.
dc.identifier.citedreferenceJeselsohn, R., Brown, N.E., Arendt, L., Klebba, I., Hu, M.G., Kuperwasser, C., Hinds, P.W., 2010. Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis 17, 65–76.
dc.identifier.citedreferenceJhappan, C., Gallahan, D., Stahle, C., Chu, E., Smith, G.H., Merlino, G., Callahan, R., 1992. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 6, 345 – 355.
dc.identifier.citedreferenceJiang, J., Hui, C.C., 2008. Hedgehog signaling in development and cancer. Dev. Cell. 15, 801 – 812.
dc.identifier.citedreferenceJin, L., Hope, K.J., Zhai, Q., Smadja-Joffe, F., Dick, J.E., 2006. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat. Med. 12, 1167 – 1174.
dc.identifier.citedreferenceJin, L., Lee, E.M., Ramshaw, H.S., Busfield, S.J., Peoppl, A.G., Wilkinson, L., Guthridge, M.A., Thomas, D., Barry, E.F., Boyd, A., Gearing, D.P., Vairo, G., Lopez, A.F., Dick, J.E., Lock, R.B., 2009. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 5, 31 – 42.
dc.identifier.citedreferenceKeiser, M.J., Setola, V., Irwin, J.J., Laggner, C., Abbas, A.I., Hufeisen, S.J., Jensen, N.H., Kuijer, M.B., Matos, R.C., Tran, T.B., Whaley, R., Glennon, R.A., Hert, J., Thomas, K.L., Edwards, D.D., Shoichet, B.K., Roth, B.L., 2009. Predicting new molecular targets for known drugs. Nature. 462, 175 – 181.
dc.identifier.citedreferenceKelly, P.N., Dakic, A., Adams, J.M., Nutt, S.L., Strasser, A., 2007. Tumor growth need not be driven by rare cancer stem cells. Science. 317, 337
dc.identifier.citedreferenceKeniry, M., Parsons, R., 2008. The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene. 27, 5477 – 5485.
dc.identifier.citedreferenceKennedy, J.A., Barabe, F., Poeppl, A.G., Wang, J.C., Dick, J.E., 2007. Comment on “Tumor growth need not be driven by rare cancer stem cells”. Science. 318, 1722 author reply 1722
dc.identifier.citedreferenceKordon, E., Smith, G., 1998. An entire functional mammary gland may comprise the progeny from a single cell. Development. 125, 1921 – 1930.
dc.identifier.citedreferenceKorkaya, H., Paulson, A., Charafe-Jauffret, E., Ginestier, C., Brown, M., Dutcher, J., Clouthier, S.G., Wicha, M.S., 2009. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 7, e1000121
dc.identifier.citedreferenceKrivtsov, A.V., Twomey, D., Feng, Z., Stubbs, M.C., Wang, Y., Faber, J., Levine, J.E., Wang, J., Hahn, W.C., Gilliland, D.G., Golub, T.R., Armstrong, S.A., 2006. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 442, 818 – 822.
dc.identifier.citedreferenceKrutzik, P.O., Nolan, G.P., 2006. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods. 3, 361 – 368.
dc.identifier.citedreferenceKuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J.W., Carey, L., Richardson, A., Weinberg, R.A., 2004. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl. Acad. Sci. USA. 101, 4966 – 4971.Epub 2004 Mar 4929
dc.identifier.citedreferenceLamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.P., Subramanian, A., Ross, K.N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S.A., Haggarty, S.J., Clemons, P.A., Wei, R., Carr, S.A., Lander, E.S., Golub, T.R., 2006. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 313, 1929 – 1935.
dc.identifier.citedreferenceLand, C.E., McGregor, D.H., 1979. Breast cancer incidence among atomic bomb survivors: implications for radiobiologic risk at low doses. J. Natl. Cancer Inst. 62, 17 – 21.
dc.identifier.citedreferenceLapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., Dick, J.E., 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367, 645 – 648.
dc.identifier.citedreferenceLessard, J., Sauvageau, G., 2003. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 423, 255 – 260.
dc.identifier.citedreferenceLi, C., Heidt, D.G., Dalerba, P., Burant, C.F., Zhang, L., Adsay, V., Wicha, M., Clarke, M.F., Simeone, D.M., 2007. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030 – 1037.
dc.identifier.citedreferenceLi, G., Robinson, G.W., Lesche, R., Martinez-Diaz, H., Jiang, Z., Rozengurt, N., Wagner, K.U., Wu, D.C., Lane, T.F., Liu, X., Hennighausen, L., Wu, H., 2002. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development. 129, 4159 – 4170.
dc.identifier.citedreferenceLi, X., Lewis, M.T., Huang, J., Gutierrez, C., Osborne, C.K., Wu, M.F., Hilsenbeck, S.G., Pavlick, A., Zhang, X., Chamness, G.C., Wong, H., Rosen, J., Chang, J.C., 2008. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 100, 672 – 679.
dc.identifier.citedreferenceLi, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., Rowlands, T., Egeblad, M., Cowin, P., Werb, Z., Tan, L.K., Rosen, J.M., Varmus, H.E., 2003. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl. Acad. Sci. USA. 100, 15853 – 15858.
dc.identifier.citedreferenceLim, E., Vaillant, F., Wu, D., Forrest, N.C., Pal, B., Hart, A.H., Asselin-Labat, M.L., Gyorki, D.E., Ward, T., Partanen, A., Feleppa, F., Huschtscha, L.I., Thorne, H.J., Fox, S.B., Yan, M., French, J.D., Brown, M.A., Smyth, G.K., Visvader, J.E., Lindeman, G.J., 2009. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat. Med. 15, 907 – 913.
dc.identifier.citedreferenceLiu, B.Y., McDermott, S.P., Khwaja, S.S., Alexander, C.M., 2004. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl. Acad. Sci. USA. 101, 4158 – 4163.
dc.identifier.citedreferenceLiu, S., Dontu, G., Mantle, I.D., Patel, S., Ahn, N.S., Jackson, K.W., Suri, P., Wicha, M.S., 2006. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66, 6063 – 6071.
dc.identifier.citedreferenceLiu, S., Ginestier, C., Charafe-Jauffret, E., Foco, H., Kleer, C.G., Merajver, S.D., Dontu, G., Wicha, M.S., 2008. BRCA1 regulates human mammary stem/progenitor cell fate. Proc. Natl. Acad. Sci. USA. 105, 1680 – 1685.
dc.identifier.citedreferenceMajeti, R., Chao, M.P., Alizadeh, A.A., Pang, W.W., Jaiswal, S., Gibbs, K.D., van Rooijen, N., Weissman, I.L., 2009. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 138, 286 – 299.
dc.identifier.citedreferenceMajeti, R., Park, C.Y., Weissman, I.L., 2007. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell. 1, 635 – 645.
dc.identifier.citedreferenceMani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., Campbell, L.L., Polyak, K., Brisken, C., Yang, J., Weinberg, R.A., 2008. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 133, 704 – 715.
dc.identifier.citedreferenceMcCulloch, E.A., Till, J.E., 1960. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat. Res. 13, 115
dc.identifier.citedreferenceMcKenzie, J.L., Gan, O.I., Doedens, M., Wang, J.C., Dick, J.E., 2006. Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat. Immunol. 7, 1225 – 1233.
dc.identifier.citedreferenceMolofsky, A.V., Pardal, R., Iwashita, T., Park, I.K., Clarke, M.F., Morrison, S.J., 2003. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 425, 962 – 967.
dc.identifier.citedreferenceMorin, R.D., O’Connor, M.D., Griffith, M., Kuchenbauer, F., Delaney, A., Prabhu, A.L., Zhao, Y., McDonald, H., Zeng, T., Hirst, M., Eaves, C.J., Marra, M.A., 2008. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18, 610 – 621.
dc.identifier.citedreferenceMorrison, S.J., Kimble, J., 2006. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 441, 1068 – 1074.
dc.identifier.citedreferenceMunos, B., 2009. Lessons from 60 years of pharmaceutical innovation. Nat. Rev. Drug Discov. 8, 959 – 968.
dc.identifier.citedreferenceMurchison, E.P., Partridge, J.F., Tam, O.H., Cheloufi, S., Hannon, G.J., 2005. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl. Acad. Sci. USA. 102, 12135 – 12140.
dc.identifier.citedreferenceNeumuller, R.A., Knoblich, J.A., 2009. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 23, 2675 – 2699.
dc.identifier.citedreferenceNirenberg, A., 2003. Managing hematologic toxicities: novel therapies. Cancer Nurs. 26, 32S – 37S.
dc.identifier.citedreferenceNowak, D., Stewart, D., Koeffler, H.P., 2009. Differentiation therapy of leukemia: 3 decades of development. Blood. 113, 3655 – 3665.
dc.identifier.citedreferenceO’Brien, C.A., Pollett, A., Gallinger, S., Dick, J.E., 2007. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445, 106 – 110.
dc.identifier.citedreferenceOverington, J.P., Al-Lazikani, B., Hopkins, A.L., 2006. How many drug targets are there?. Nat. Rev. Drug Discov. 5, 993
dc.identifier.citedreferencePark, I.K., Qian, D., Kiel, M., Becker, M.W., Pihalja, M., Weissman, I.L., Morrison, S.J., Clarke, M.F., 2003. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 423, 302 – 305.
dc.identifier.citedreferencePark, S.M., Gaur, A.B., Lengyel, E., Peter, M.E., 2008. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894 – 907.
dc.identifier.citedreferencePerou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S.X., Lonning, P.E., Borresen-Dale, A.L., Brown, P.O., Botstein, D., 2000. Molecular portraits of human breast tumours. Nature. 406, 747 – 752.
dc.identifier.citedreferencePerrimon, N., Friedman, A., Mathey-Prevot, B., Eggert, U.S., 2007. Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discov. Today. 12, 28 – 33.
dc.identifier.citedreferencePeter, M.E., 2010. Regulating cancer stem cells the miR way. Cell Stem Cell. 6, 4 – 6.
dc.identifier.citedreferencePhillips, T.M., McBride, W.H., Pajonk, F., 2006. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J. Natl. Cancer Inst. 98, 1777 – 1785.
dc.identifier.citedreferencePierce, G.B., Dixon, F.J., Verney, E.L., 1960. Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab. Invest. 9, 583 – 602.
dc.identifier.citedreferencePierce, G.B., Speers, W.C., 1988. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 48, 1996 – 2004.
dc.identifier.citedreferencePollard, S.M., Yoshikawa, K., Clarke, I.D., Danovi, D., Stricker, S., Russell, R., Bayani, J., Head, R., Lee, M., Bernstein, M., Squire, J.A., Smith, A., Dirks, P., 2009. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell. 4, 568 – 580.
dc.identifier.citedreferencePrince, M.E., Sivanandan, R., Kaczorowski, A., Wolf, G.T., Kaplan, M.J., Dalerba, P., Weissman, I.L., Clarke, M.F., Ailles, L.E., 2007. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA.
dc.identifier.citedreferenceQuintana, E., Shackleton, M., Sabel, M.S., Fullen, D.R., Johnson, T.M., Morrison, S.J., 2008. Efficient tumour formation by single human melanoma cells. Nature. 456, 593 – 598.
dc.identifier.citedreferenceRachidi, W., Harfourche, G., Lemaitre, G., Amiot, F., Vaigot, P., Martin, M.T., 2007. Sensing radiosensitivity of human epidermal stem cells. Radiother. Oncol. 83, 267 – 276.
dc.identifier.citedreferenceReya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L., 2001. Stem cells, cancer, and cancer stem cells. Nature. 414, 105 – 111.
dc.identifier.citedreferenceRix, U., Superti-Furga, G., 2009. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 5, 616 – 624.
dc.identifier.citedreferenceRocha Lima, C.M., Green, M.R., Rotche, R., Miller, W.H., Jeffrey, G.M., Cisar, L.A., Morganti, A., Orlando, N., Gruia, G., Miller, L.L., 2004. Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J. Clin. Oncol. 22, 3776 – 3783.
dc.identifier.citedreferenceRubin, L.L., de Sauvage, F.J., 2006. Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug Discov. 5, 1026
dc.identifier.citedreferenceRudin, C.M., Hann, C.L., Laterra, J., Yauch, R.L., Callahan, C.A., Fu, L., Holcomb, T., Stinson, J., Gould, S.E., Coleman, B., LoRusso, P.M., Von Hoff, D.D., de Sauvage, F.J., Low, J.A., 2009. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173 – 1178.
dc.identifier.citedreferenceSansone, P., Storci, G., Tavolari, S., Guarnieri, T., Giovannini, C., Taffurelli, M., Ceccarelli, C., Santini, D., Paterini, P., Marcu, K.B., Chieco, P., Bonafe, M., 2007. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J. Clin. Invest. 117, 3988 – 4002.
dc.identifier.citedreferenceShackleton, M., Vaillant, F., Simpson, K.J., Stingl, J., Smyth, G.K., Asselin-Labat, M.L., Wu, L., Lindeman, G.J., Visvader, J.E., 2006. Generation of a functional mammary gland from a single stem cell. Nature. 439, 84 – 88.
dc.identifier.citedreferenceShimono, Y., Zabala, M., Cho, R.W., Lobo, N., Dalerba, P., Qian, D., Diehn, M., Liu, H., Panula, S.P., Chiao, E., Dirbas, F.M., Somlo, G., Pera, R.A., Lao, K., Clarke, M.F., 2009. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 138, 592 – 603.
dc.identifier.citedreferenceShipitsin, M., Polyak, K., 2008. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab. Invest. 88, 459 – 463.
dc.identifier.citedreferenceShultz, L.D., Ishikawa, F., Greiner, D.L., 2007. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118 – 130.
dc.identifier.citedreferenceShultz, L.D., Schweitzer, P.A., Christianson, S.W., Gott, B., Schweitzer, I.B., Tennent, B., McKenna, S., Mobraaten, L., Rajan, T.V., Greiner, D.L., 1995. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180 – 191.
dc.identifier.citedreferenceSingh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., Dirks, P.B., 2004. Identification of human brain tumour initiating cells. Nature. 432, 396 – 401.
dc.identifier.citedreferenceSmith, G.H., Medina, D., 1988. A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J. Cell Sci. 90, 173 – 183.
dc.identifier.citedreferenceSomervaille, T.C., Cleary, M.L., 2006. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 10, 257 – 268.
dc.identifier.citedreferenceWhitehurst, A.W., Bodemann, B.O., Cardenas, J., Ferguson, D., Girard, L., Peyton, M., Minna, J.D., Michnoff, C., Hao, W., Roth, M.G., Xie, X.J., White, M.A., 2007. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature. 446, 815 – 819.
dc.identifier.citedreferenceSorlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Thorsen, T., Quist, H., Matese, J.C., Brown, P.O., Botstein, D., Eystein Lonning, P., Borresen-Dale, A.L., 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA. 98, 10869 – 10874.
dc.identifier.citedreferenceSoutham, C., Brunschwig, A., Dizon, Q., 1962. Autologous and Homologous Transplantation of Human Cancer. Biological Interactions in Normal and Neoplastic Growth: a Contribution to the Tumor-Host Problem. Little Brown Boston, MA pp. 723–738
dc.identifier.citedreferenceSpangrude, G.J., Heimfeld, S., Weissman, I.L., 1988. Purification and characterization of mouse hematopoietic stem cells. Science. 241, 58 – 62.(erratum appears in Science 1989 Jun 2. 244(4908), 1030)
dc.identifier.citedreferenceStingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., Li, H.I., Eaves, C.J., 2006. Purification and unique properties of mammary epithelial stem cells. Nature. 439, 993 – 997.
dc.identifier.citedreferenceThayer, S.P., di Magliano, M.P., Heiser, P.W., Nielsen, C.M., Roberts, D.J., Lauwers, G.Y., Qi, Y.P., Gysin, S., Fernandez-del Castillo, C., Yajnik, V., Antoniu, B., McMahon, M., Warshaw, A.L., Hebrok, M., 2003. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 425, 851 – 856.
dc.identifier.citedreferenceTheunissen, J.W., de Sauvage, F.J., 2009. Paracrine hedgehog signaling in cancer. Cancer Res. 69, 6007 – 6010.
dc.identifier.citedreferenceTroester, M.A., Herschkowitz, J.I., Oh, D.S., He, X., Hoadley, K.A., Barbier, C.S., Perou, C.M., 2006. Gene expression patterns associated with p53 status in breast cancer. BMC Cancer. 6, 276
dc.identifier.citedreferenceTrotti, A., Colevas, A.D., Setser, A., Rusch, V., Jaques, D., Budach, V., Langer, C., Murphy, B., Cumberlin, R., Coleman, C.N., Rubin, P., 2003. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 13, 176 – 181.
dc.identifier.citedreferenceTrowbridge, J.J., Scott, M.P., Bhatia, M., 2006. Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc. Natl. Acad. Sci. USA. 103, 14134 – 14139.
dc.identifier.citedreferenceTsai, Y.C., Lu, Y., Nichols, P.W., Zlotnikov, G., Jones, P.A., Smith, H.S., 1996. Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res. 56, 402 – 404.
dc.identifier.citedreferenceVaillant, F., Asselin-Labat, M.L., Shackleton, M., Forrest, N.C., Lindeman, G.J., Visvader, J.E., 2008. The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res. 68, 7711 – 7717.
dc.identifier.citedreferenceVisvader, J.E., 2009. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 23, 2563 – 2577.
dc.identifier.citedreferenceVon Hoff, D.D., LoRusso, P.M., Rudin, C.M., Reddy, J.C., Yauch, R.L., Tibes, R., Weiss, G.J., Borad, M.J., Hann, C.L., Brahmer, J.R., Mackey, H.M., Lum, B.L., Darbonne, W.C., Marsters, J.C., de Sauvage, F.J., Low, J.A., 2009. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med. 361, 1164 – 1172.
dc.identifier.citedreferenceWang, J., Wakeman, T.P., Lathia, J.D., Hjelmeland, A.B., Wang, X.F., White, R.R., Rich, J.N., Sullenger, B.A., 2010. Notch promotes radioresistance of glioma stem cells. Stem Cells. 28, 17 – 28.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.