Show simple item record

Template Based Modeling and Structural Refinement of Protein-Protein Interactions.

dc.contributor.authorGovindarajoo, Brandon
dc.date.accessioned2017-01-26T22:19:29Z
dc.date.availableNO_RESTRICTION
dc.date.available2017-01-26T22:19:29Z
dc.date.issued2016
dc.date.submitted2016
dc.identifier.urihttps://hdl.handle.net/2027.42/135847
dc.description.abstractDetermining protein structures from sequence is a fundamental problem in molecular biology, as protein structure is essential to understanding protein function. In this study, I developed one of the first fully automated pipelines for template based quaternary structure prediction starting from sequence. Two critical steps for template based modeling are identifying the correct homologous structures by threading which generates sequence to structure alignments and refining the initial threading template coordinates closer to the native conformation. I developed SPRING (single-chain-based prediction of interactions and geometries), a monomer threading to dimer template mapping program, which was compared to the dimer co-threading program, COTH, using 1838 non homologous target complex structures. SPRING’s similarity score outperformed COTH in the first place ranking of templates, correctly identifying 798 and 527 interfaces respectively. More importantly the results were found to be complementary and the programs could be combined in a consensus based threading program showing a 5.1% improvement compared to SPRING. Template based modeling requires a structural analog being present in the PDB. A full search of the PDB, using threading and structural alignment, revealed that only 48.7% of the PDB has a suitable template whereas only 39.4% of the PDB has templates that can be identified by threading. In order to circumvent this, I included intramolecular domain-domain interfaces into the PDB library to boost template recognition of protein dimers; the merging of the two classes of interfaces improved recognition of heterodimers by 40% using benchmark settings. Next the template based assembly of protein complexes pipeline, TACOS, was created. The pipeline combines threading templates and domain knowledge from the PDB into a knowledge based energy score. The energy score is integrated into a Monte Carlo sampling simulation that drives the initial template closer to the native topology. The full pipeline was benchmarked using 350 non homologous structures and compared to two state of the art programs for dimeric structure prediction: ZDOCK and MODELLER. On average, TACOS models global and interface structure have a better quality than the models generated by MODELLER and ZDOCK.
dc.language.isoen_US
dc.subjectProtein structure prediction.
dc.subjectProtein protein interactions.
dc.titleTemplate Based Modeling and Structural Refinement of Protein-Protein Interactions.
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBioinformatics
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberZhang, Yang
dc.contributor.committeememberFreddolino, Peter Louis
dc.contributor.committeememberAndrews, Philip C
dc.contributor.committeememberAthey, Brian D
dc.contributor.committeememberBurns Jr, Daniel M
dc.contributor.committeememberGrant, Barry
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelScience
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135847/1/bgovi_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.