Tracing the Solar Wind to its Origin: New Insights from ACE/SWICS Data and SO/HIS Performance Predictions
dc.contributor.author | Stakhiv, Mark | |
dc.date.accessioned | 2017-01-26T22:20:01Z | |
dc.date.available | NO_RESTRICTION | |
dc.date.available | 2017-01-26T22:20:01Z | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/135883 | |
dc.description.abstract | The solar wind is a hot tenuous plasma that continuously streams off of the Sun into the heliosphere. The solar wind is the medium through which coronal mass ejections (CMEs) travel from the Sun to the Earth, where they can disrupt vital space-based technologies and wreak havoc on terrestrial infrastructure. Understanding the solar wind can lead to improved predications of CME arrival time as well as their geoeffectiveness. The solar wind is studied in this thesis through in situ measurements of heavy ions. Several outstanding questions about the solar wind are addressed in this thesis: What is the origin of the solar wind? How is the solar wind heated and accelerated? The charge state distribution and abundance of heavy ions in the solar wind record information about their source location and heating mechanism. This information is largely unchanged from the Sun to the Earth, where it is collected in situ with spacecraft. In this thesis we use data from the Solar Wind Ion Composition Spectrometer (SWICS) that flew on two spacecraft: Ulysses (1990 - 2009) and ACE (1998 - present). We analyze the kinetic and compositional properties of the solar wind with heavy ion data and lay out a unified wind scenario, which states that the solar wind originates from two different sources and regardless of its release mechanism the solar wind is then accelerated by waves. The data from these instruments are the best available to date but still lack the measurement cadence and distribution resolution to fully answer all of the solar wind questions. To address these issues a new heavy ion sensor is being developed to be the next generation of in situ heavy ion measurements. This thesis supports the development of this instrument through the analysis of the sensors measurement properties and the characterization of its geometric factor and efficiencies. | |
dc.language.iso | en_US | |
dc.subject | Solar Wind Origin and Acceleration using Heavy Ion Data | |
dc.title | Tracing the Solar Wind to its Origin: New Insights from ACE/SWICS Data and SO/HIS Performance Predictions | |
dc.type | Thesis | en_US |
dc.description.thesisdegreename | PhD | en_US |
dc.description.thesisdegreediscipline | Atmospheric, Oceanic & Space Science | |
dc.description.thesisdegreegrantor | University of Michigan, Horace H. Rackham School of Graduate Studies | |
dc.contributor.committeemember | Landi, Enrico | |
dc.contributor.committeemember | Lepri, Susan Therese | |
dc.contributor.committeemember | He, Zhong | |
dc.contributor.committeemember | Raines, Jim | |
dc.subject.hlbsecondlevel | Atmospheric, Oceanic and Space Sciences | |
dc.subject.hlbtoplevel | Engineering | |
dc.subject.hlbtoplevel | Science | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/135883/1/mstakhiv_1.pdf | |
dc.owningcollname | Dissertations and Theses (Ph.D. and Master's) |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.