Show simple item record

A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein–Protein Interactions

dc.contributor.authorJoiner, Cassandra M.
dc.contributor.authorBreen, Meghan E.
dc.contributor.authorClayton, James
dc.contributor.authorMapp, Anna K.
dc.date.accessioned2017-02-02T22:00:12Z
dc.date.available2018-03-01T16:43:50Zen
dc.date.issued2017-01-17
dc.identifier.citationJoiner, Cassandra M.; Breen, Meghan E.; Clayton, James; Mapp, Anna K. (2017). "A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein–Protein Interactions." ChemBioChem 18(2): 181-184.
dc.identifier.issn1439-4227
dc.identifier.issn1439-7633
dc.identifier.urihttps://hdl.handle.net/2027.42/135955
dc.description.abstractIn vivo covalent chemical capture by using photoactivatable unnatural amino acids (UAAs) is a powerful tool for the identification of transient protein–protein interactions (PPIs) in their native environment. However, the isolation and characterization of the crosslinked complexes can be challenging. Here, we report the first in vivo incorporation of the bifunctional UAA BPKyne for the capture and direct labeling of crosslinked protein complexes through post‐crosslinking functionalization of a bioorthogonal alkyne handle. Using the prototypical yeast transcriptional activator Gal4, we demonstrate that BPKyne is incorporated at the same level as the commonly used photoactivatable UAA pBpa and effectively captures the Gal4–Gal80 transcriptional complex. Post‐crosslinking, the Gal4–Gal80 adduct was directly labeled by treatment of the alkyne handle with a biotin‐azide probe; this enabled facile isolation and visualization of the crosslinked adduct from whole‐cell lysate. This bifunctional amino acid extends the utility of the benzophenone crosslinker and expands our toolbox of chemical probes for mapping PPIs in their native cellular environment.Using the bifunctional unnatural amino acid, BPKyne, we have developed a strategy to capture and directly label transient protein–protein interactions (PPIs) in their native environment. Click chemical functionalization post‐crosslinking with a biotin–azide probe enabled the isolation of transcriptional protein complexes from yeast cells. This amino acid will expand the toolbox for the discovery of new PPIs in live cells.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprotein–protein interactions
dc.subject.otherclick chemistry
dc.subject.otherbioorthogonal labeling
dc.subject.otherunnatural amino acids
dc.subject.otherphoto-crosslinking
dc.titleA Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein–Protein Interactions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135955/1/cbic201600578.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135955/2/cbic201600578_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135955/3/cbic201600578-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/cbic.201600578
dc.identifier.sourceChemBioChem
dc.identifier.citedreferenceC. E. Fritze, T. R. Anderson in Methods in Enzymology, Vol. 327: Applications of Chimeric Genes and Hybrid Proteins–Part B: Cell Biology and Physiology (Eds.: J. Thorner, S. D. Emr, J. N. Abelson ), Academic Press, San Diego, 2000, pp.  3 – 16.
dc.identifier.citedreferenceJ. R. Perkins, I. Diboun, B. H. Dessailly, J. G. Lees, C. Orengo, Structure 2010, 18, 1233 – 1243;
dc.identifier.citedreferenceT. Berggård, S. Linse, P. James, Proteomics 2007, 7, 2833 – 2842.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. W. Chin, P. G. Schultz, ChemBioChem 2002, 3, 1135 – 1137;
dc.identifier.citedreferenceJ. W. Chin, T. A. Cropp, J. C. Anderson, M. Mukherji, Z. Zhang, P. G. Schultz, Science 2003, 301, 964 – 967;
dc.identifier.citedreferenceW. Liu, L. Alfonta, A. V. Mack, P. G. Schultz, Angew. Chem. Int. Ed. 2007, 46, 6073 – 6075; Angew. Chem. 2007, 119, 6185 – 6187;
dc.identifier.citedreferenceQ. Wang, L. Wang, J. Am. Chem. Soc. 2008, 130, 6066 – 6067;
dc.identifier.citedreferenceT. C. Lee, M. Kang, C. H. Kim, P. G. Schultz, E. Chapman, A. A. Deniz, ChemBioChem 2016, 17, 981 – 984;
dc.identifier.citedreferenceA. Yamaguchi, T. Matsuda, K. Ohtake, T. Yanagisawa, S. Yokoyama, Y. Fujiwara, T. Watanabe, T. Hohsaka, K. Sakamoto, Bioconjugate Chem. 2016, 27, 198 – 206;
dc.identifier.citedreferenceN. Hino, Y. Okazaki, T. Kobayashi, A. Hayashi, K. Sakamoto, S. Yokoyama, Nat. Methods 2005, 2, 201 – 206.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Y. Majmudar, L. W. Lee, J. K. Lancia, A. Nwokoye, Q. Wang, A. M. Wangs, L. Wang, A. K. Mapp, J. Am. Chem. Soc. 2009, 131, 14240 – 14242;
dc.identifier.citedreferenceM. Krishnamurthy, A. Dugan, A. Nwokoye, Y.-H. Fung, J. K. Lancia, C. Y. Majmudar, A. K. Mapp, ACS Chem. Biol. 2011, 6, 1321 – 1326;
dc.identifier.citedreferenceA. Dugan, R. Pricer, M. Katz, A. K. Mapp, Protein Sci. 2016, 25, 1371 – 1377.
dc.identifier.citedreferenceS. I. Presolski, V. P. Hong, M. G. Finn in Current Protocols in Chemical Biology, Wiley, Hoboken, 2009.
dc.identifier.citedreferenceY. Chen, Y. Wu, P. Henklein, X. Li, K. P. Hofmann, K. Nakanishi, O. P. Ernst, Chem. Eur. J. 2010, 16, 7389 – 7394.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. B. Thoden, L. A. Ryan, R. J. Reece, H. M. Holden, J. Biol. Chem. 2008, 283, 30266 – 30272;
dc.identifier.citedreferenceA. Z. Ansari, R. J. Reece, M. Ptashne, Proc. Natl. Acad. Sci. USa 1998, 95, 13543 – 13548.
dc.identifier.citedreferenceA. Ahlburg, A. T. Lindhardt, R. H. Taaning, A. E. Modvig, T. Skrydstrup, J. Org. Chem. 2013, 78, 10310 – 10318.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. Dorman, G. D. Prestwich, Biochemistry 1994, 33, 5661 – 5673.
dc.identifier.citedreferenceJ. K. Lancia, A. Nwokoye, A. Dugan, C. Joiner, R. Pricer, A. K. Mapp, Biopolymers 2014, 101, 391 – 397.
dc.identifier.citedreferenceA. L. Stokes, S. J. Miyake-Stoner, J. C. Peeler, D. P. Nguyen, R. P. Hammer, R. A. Mehl, Mol. BioSyst. 2009, 5, 1032;
dc.identifier.citedreferenceY.-S. Wang, X. Fang, A. L. Wallace, B. Wu, W. R. Liu, J. Am. Chem. Soc. 2012, 134, 2950 – 2953;
dc.identifier.citedreferenceD. D. Young, S. Jockush, N. J. Turro, P. G. Schultz, Bioorg. Med. Chem. Lett. 2011, 21, 7502 – 7504.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. L. Hopkins, C. R. Groom, Nat. Rev. Drug Discovery 2002, 1, 727 – 730;
dc.identifier.citedreferenceS. Surade, T. L. Blundell, Chem. Biol. 2012, 19, 42 – 50.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. D. Thompson, A. Dugan, J. E. Gestwicki, A. K. Mapp, ACS Chem. Biol. 2012, 7, 1311 – 1320;
dc.identifier.citedreferenceA. K. Mapp, A. Z. Ansari, ACS Chem. Biol. 2007, 2, 62 – 75;
dc.identifier.citedreferenceJ.-F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G. F. Berriz, F. D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, et al., Nature 2005, 437, 1173 – 1178;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.