A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein–Protein Interactions

Show simple item record

dc.contributor.author Joiner, Cassandra M.
dc.contributor.author Breen, Meghan E.
dc.contributor.author Clayton, James
dc.contributor.author Mapp, Anna K.
dc.date.accessioned 2017-02-02T22:00:12Z
dc.date.available 2018-03-01T16:43:50Z en
dc.date.issued 2017-01-17
dc.identifier.citation Joiner, Cassandra M.; Breen, Meghan E.; Clayton, James; Mapp, Anna K. (2017). "A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein–Protein Interactions." ChemBioChem 18(2): 181-184.
dc.identifier.issn 1439-4227
dc.identifier.issn 1439-7633
dc.identifier.uri http://hdl.handle.net/2027.42/135955
dc.description.abstract In vivo covalent chemical capture by using photoactivatable unnatural amino acids (UAAs) is a powerful tool for the identification of transient protein–protein interactions (PPIs) in their native environment. However, the isolation and characterization of the crosslinked complexes can be challenging. Here, we report the first in vivo incorporation of the bifunctional UAA BPKyne for the capture and direct labeling of crosslinked protein complexes through post‐crosslinking functionalization of a bioorthogonal alkyne handle. Using the prototypical yeast transcriptional activator Gal4, we demonstrate that BPKyne is incorporated at the same level as the commonly used photoactivatable UAA pBpa and effectively captures the Gal4–Gal80 transcriptional complex. Post‐crosslinking, the Gal4–Gal80 adduct was directly labeled by treatment of the alkyne handle with a biotin‐azide probe; this enabled facile isolation and visualization of the crosslinked adduct from whole‐cell lysate. This bifunctional amino acid extends the utility of the benzophenone crosslinker and expands our toolbox of chemical probes for mapping PPIs in their native cellular environment.Using the bifunctional unnatural amino acid, BPKyne, we have developed a strategy to capture and directly label transient protein–protein interactions (PPIs) in their native environment. Click chemical functionalization post‐crosslinking with a biotin–azide probe enabled the isolation of transcriptional protein complexes from yeast cells. This amino acid will expand the toolbox for the discovery of new PPIs in live cells.
dc.publisher Academic Press
dc.publisher Wiley Periodicals, Inc.
dc.subject.other protein–protein interactions
dc.subject.other click chemistry
dc.subject.other bioorthogonal labeling
dc.subject.other unnatural amino acids
dc.subject.other photo-crosslinking
dc.title A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein–Protein Interactions
dc.type Article en_US
dc.rights.robots IndexNoFollow
dc.subject.hlbsecondlevel Biological Chemistry
dc.subject.hlbtoplevel Health Sciences
dc.subject.hlbtoplevel Science
dc.description.peerreviewed Peer Reviewed
dc.description.bitstreamurl http://deepblue.lib.umich.edu/bitstream/2027.42/135955/1/cbic201600578.pdf
dc.description.bitstreamurl http://deepblue.lib.umich.edu/bitstream/2027.42/135955/2/cbic201600578_am.pdf
dc.description.bitstreamurl http://deepblue.lib.umich.edu/bitstream/2027.42/135955/3/cbic201600578-sup-0001-misc_information.pdf
dc.identifier.doi 10.1002/cbic.201600578
dc.identifier.source ChemBioChem
dc.identifier.citedreference C. E. Fritze, T. R. Anderson in Methods in Enzymology, Vol. 327: Applications of Chimeric Genes and Hybrid Proteins–Part B: Cell Biology and Physiology (Eds.: J. Thorner, S. D. Emr, J. N. Abelson ), Academic Press, San Diego, 2000, pp.  3 – 16.
dc.identifier.citedreference J. R. Perkins, I. Diboun, B. H. Dessailly, J. G. Lees, C. Orengo, Structure 2010, 18, 1233 – 1243;
dc.identifier.citedreference T. Berggård, S. Linse, P. James, Proteomics 2007, 7, 2833 – 2842.
dc.identifier.citedreference J. W. Chin, P. G. Schultz, ChemBioChem 2002, 3, 1135 – 1137;
dc.identifier.citedreference J. W. Chin, T. A. Cropp, J. C. Anderson, M. Mukherji, Z. Zhang, P. G. Schultz, Science 2003, 301, 964 – 967;
dc.identifier.citedreference W. Liu, L. Alfonta, A. V. Mack, P. G. Schultz, Angew. Chem. Int. Ed. 2007, 46, 6073 – 6075; Angew. Chem. 2007, 119, 6185 – 6187;
dc.identifier.citedreference Q. Wang, L. Wang, J. Am. Chem. Soc. 2008, 130, 6066 – 6067;
dc.identifier.citedreference T. C. Lee, M. Kang, C. H. Kim, P. G. Schultz, E. Chapman, A. A. Deniz, ChemBioChem 2016, 17, 981 – 984;
dc.identifier.citedreference A. Yamaguchi, T. Matsuda, K. Ohtake, T. Yanagisawa, S. Yokoyama, Y. Fujiwara, T. Watanabe, T. Hohsaka, K. Sakamoto, Bioconjugate Chem. 2016, 27, 198 – 206;
dc.identifier.citedreference N. Hino, Y. Okazaki, T. Kobayashi, A. Hayashi, K. Sakamoto, S. Yokoyama, Nat. Methods 2005, 2, 201 – 206.
dc.identifier.citedreference C. Y. Majmudar, L. W. Lee, J. K. Lancia, A. Nwokoye, Q. Wang, A. M. Wangs, L. Wang, A. K. Mapp, J. Am. Chem. Soc. 2009, 131, 14240 – 14242;
dc.identifier.citedreference M. Krishnamurthy, A. Dugan, A. Nwokoye, Y.-H. Fung, J. K. Lancia, C. Y. Majmudar, A. K. Mapp, ACS Chem. Biol. 2011, 6, 1321 – 1326;
dc.identifier.citedreference A. Dugan, R. Pricer, M. Katz, A. K. Mapp, Protein Sci. 2016, 25, 1371 – 1377.
dc.identifier.citedreference S. I. Presolski, V. P. Hong, M. G. Finn in Current Protocols in Chemical Biology, Wiley, Hoboken, 2009.
dc.identifier.citedreference Y. Chen, Y. Wu, P. Henklein, X. Li, K. P. Hofmann, K. Nakanishi, O. P. Ernst, Chem. Eur. J. 2010, 16, 7389 – 7394.
dc.identifier.citedreference J. B. Thoden, L. A. Ryan, R. J. Reece, H. M. Holden, J. Biol. Chem. 2008, 283, 30266 – 30272;
dc.identifier.citedreference A. Z. Ansari, R. J. Reece, M. Ptashne, Proc. Natl. Acad. Sci. USa 1998, 95, 13543 – 13548.
dc.identifier.citedreference A. Ahlburg, A. T. Lindhardt, R. H. Taaning, A. E. Modvig, T. Skrydstrup, J. Org. Chem. 2013, 78, 10310 – 10318.
dc.identifier.citedreference G. Dorman, G. D. Prestwich, Biochemistry 1994, 33, 5661 – 5673.
dc.identifier.citedreference J. K. Lancia, A. Nwokoye, A. Dugan, C. Joiner, R. Pricer, A. K. Mapp, Biopolymers 2014, 101, 391 – 397.
dc.identifier.citedreference A. L. Stokes, S. J. Miyake-Stoner, J. C. Peeler, D. P. Nguyen, R. P. Hammer, R. A. Mehl, Mol. BioSyst. 2009, 5, 1032;
dc.identifier.citedreference Y.-S. Wang, X. Fang, A. L. Wallace, B. Wu, W. R. Liu, J. Am. Chem. Soc. 2012, 134, 2950 – 2953;
dc.identifier.citedreference D. D. Young, S. Jockush, N. J. Turro, P. G. Schultz, Bioorg. Med. Chem. Lett. 2011, 21, 7502 – 7504.
dc.identifier.citedreference A. L. Hopkins, C. R. Groom, Nat. Rev. Drug Discovery 2002, 1, 727 – 730;
dc.identifier.citedreference S. Surade, T. L. Blundell, Chem. Biol. 2012, 19, 42 – 50.
dc.identifier.citedreference A. D. Thompson, A. Dugan, J. E. Gestwicki, A. K. Mapp, ACS Chem. Biol. 2012, 7, 1311 – 1320;
dc.identifier.citedreference A. K. Mapp, A. Z. Ansari, ACS Chem. Biol. 2007, 2, 62 – 75;
dc.identifier.citedreference J.-F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G. F. Berriz, F. D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, et al., Nature 2005, 437, 1173 – 1178;
dc.owningcollname Interdisciplinary and Peer-Reviewed
 Show simple item record

This item appears in the following Collection(s)

Search Deep Blue

Advanced Search

Browse by

My Account


Available Now

MLibrary logo