Show simple item record

Reduced Osteoarthritis Severity in Aged Mice With Deletion of Macrophage Migration Inhibitory Factor

dc.contributor.authorRowe, Meredith A.
dc.contributor.authorHarper, Lindsey R.
dc.contributor.authorMcNulty, Margaret A.
dc.contributor.authorLau, Anthony G.
dc.contributor.authorCarlson, Cathy S.
dc.contributor.authorLeng, Lin
dc.contributor.authorBucala, Richard J.
dc.contributor.authorMiller, Richard A.
dc.contributor.authorLoeser, Richard F.
dc.date.accessioned2017-02-02T22:00:14Z
dc.date.available2018-04-02T18:03:23Zen
dc.date.issued2017-02
dc.identifier.citationRowe, Meredith A.; Harper, Lindsey R.; McNulty, Margaret A.; Lau, Anthony G.; Carlson, Cathy S.; Leng, Lin; Bucala, Richard J.; Miller, Richard A.; Loeser, Richard F. (2017). "Reduced Osteoarthritis Severity in Aged Mice With Deletion of Macrophage Migration Inhibitory Factor." Arthritis & Rheumatology 69(2): 352-361.
dc.identifier.issn2326-5191
dc.identifier.issn2326-5205
dc.identifier.urihttps://hdl.handle.net/2027.42/135956
dc.publisherWiley Periodicals, Inc.
dc.titleReduced Osteoarthritis Severity in Aged Mice With Deletion of Macrophage Migration Inhibitory Factor
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelRheumatology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135956/1/art39844.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135956/2/art39844_am.pdf
dc.identifier.doi10.1002/art.39844
dc.identifier.sourceArthritis & Rheumatology
dc.identifier.citedreferenceLittle CB, Zaki S. What constitutes an “animal model of osteoarthritis” – the need for consensus? Osteoarthritis Cartilage 2012; 20: 261 – 7.
dc.identifier.citedreferenceLau AG, Sun J, Hannah WB, Livingston EW, Heymann D, Bateman TA, et al. Joint bleeding in factor VIII deficient mice causes an acute loss of trabecular bone and calcification of joint soft tissues which is prevented with aggressive factor replacement. Haemophilia 2014; 20: 716 – 22.
dc.identifier.citedreferenceMuller R, van Campenhout H, van Damme B, van der Perre G, Dequeker J, Hildebrand T, et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro‐computed tomography. Bone 1998; 23: 59 – 66.
dc.identifier.citedreferenceSchelbergen RF, van Dalen S, ter Huurne M, Roth J, Vogl T, Noel D, et al. Treatment efficacy of adipose‐derived stem cells in experimental osteoarthritis is driven by high synovial activation and reflected by S100A8/A9 serum levels. Osteoarthritis Cartilage 2014; 22: 1158 – 66.
dc.identifier.citedreferenceOshima S, Onodera S, Amizuka N, Li M, Irie K, Watanabe S, et al. Macrophage migration inhibitory factor‐deficient mice are resistant to ovariectomy‐induced bone loss. FEBS Lett 2006; 580: 1251 – 6.
dc.identifier.citedreferenceJacquin C, Koczon‐Jaremko B, Aguila HL, Leng L, Bucala R, Kuchel GA, et al. Macrophage migration inhibitory factor inhibits osteoclastogenesis. Bone 2009; 45: 640 – 9.
dc.identifier.citedreferenceHardcastle SA, Dieppe P, Gregson CL, Davey Smith G, Tobias JH. Osteoarthritis and bone mineral density: are strong bones bad for joints? Bonekey Rep 2015; 4: 624.
dc.identifier.citedreferenceDe Hooge AS, van de Loo FA, Bennink MB, Arntz OJ, de Hooge P, van den Berg WB. Male IL‐6 gene knock out mice developed more advanced osteoarthritis upon aging. Osteoarthritis Cartilage 2005; 13: 66 – 73.
dc.identifier.citedreferenceRyu JH, Yang S, Shin Y, Rhee J, Chun CH, Chun JS. Interleukin‐6 plays an essential role in hypoxia‐inducible factor 2α–induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum 2011; 63: 2732 – 43.
dc.identifier.citedreferenceWang X, Jin X, Han W, Cao Y, Halliday A, Blizzard L, et al. Cross‐sectional and longitudinal associations between knee joint effusion synovitis and knee pain in older adults. J Rheumatol 2016; 43: 121 – 30.
dc.identifier.citedreferenceBenito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 2005; 64: 1263 – 7.
dc.identifier.citedreferenceJackson MT, Moradi B, Zaki S, Smith MM, McCracken S, Smith SM, et al. Depletion of protease‐activated receptor 2 but not protease‐activated receptor 1 may confer protection against osteoarthritis in mice through extracartilaginous mechanisms. Arthritis Rheumatol 2014; 66: 3337 – 48.
dc.identifier.citedreferenceMorand EF, Bucala R, Leech M. Macrophage migration inhibitory factor: an emerging therapeutic target in rheumatoid arthritis. Arthritis Rheum 2003; 48: 291 – 9.
dc.identifier.citedreferenceKuhn K, D’Lima DD, Hashimoto S, Lotz M. Cell death in cartilage. Osteoarthritis Cartilage 2004; 12: 1 – 16.
dc.identifier.citedreferenceMun SH, Oh D, Lee SK. Macrophage migration inhibitory factor down‐regulates the RANKL–RANK signaling pathway by activating Lyn tyrosine kinase in mouse models. Arthritis Rheumatol 2014; 66: 2482 – 93.
dc.identifier.citedreferenceDequeker J, Aerssens J, Luyten FP. Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res 2003; 15: 426 – 39.
dc.identifier.citedreferenceZhang Y, Hannan MT, Chaisson CE, McAlindon TE, Evans SR, Aliabadi P, et al. Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham Study. J Rheumatol 2000; 27: 1032 – 7.
dc.identifier.citedreferenceOnodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, et al. Macrophage migration inhibitory factor up‐regulates matrix metalloproteinase‐9 and ‐13 in rat osteoblasts: relevance to intracellular signaling pathways. J Biol Chem 2002; 277: 7865 – 74.
dc.identifier.citedreferenceKleemann R, Hausser A, Geiger G, Mischke R, Burger‐Kentischer A, Flieger O, et al. Intracellular action of the cytokine MIF to modulate AP‐1 activity and the cell cycle through Jab1. Nature 2000; 408: 211 – 6.
dc.identifier.citedreferenceCross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 2014; 73: 1323 – 30.
dc.identifier.citedreferenceBucala R. MIF, MIF alleles, and prospects for therapeutic intervention in autoimmunity. J Clin Immunol 2013; 33 Suppl 1: S72 – 8.
dc.identifier.citedreferenceLoeser RF. Age‐related changes in the musculoskeletal system and the development of osteoarthritis. Clin Geriatr Med 2010; 26: 371 – 86.
dc.identifier.citedreferenceDing C, Cicuttini F, Scott F, Cooley H, Jones G. Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis 2005; 64: 549 – 55.
dc.identifier.citedreferenceChen AC, Temple MM, Ng DM, Verzijl N, DeGroot J, TeKoppele JM, et al. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis Rheum 2002; 46: 3212 – 7.
dc.identifier.citedreferenceLoeser RF, Gandhi U, Long DL, Yin W, Chubinskaya S. Aging and oxidative stress reduce the response of human articular chondrocytes to insulin‐like growth factor 1 and osteogenic protein 1. Arthritis Rheumatol 2014; 66: 2201 – 9.
dc.identifier.citedreferenceMessai H, Duchossoy Y, Khatib AM, Panasyuk A, Mitrovic DR. Articular chondrocytes from aging rats respond poorly to insulin‐like growth factor‐1: an altered signaling pathway. Mech Ageing Dev 2000; 115: 21 – 37.
dc.identifier.citedreferenceBlaney Davidson EN, Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduced transforming growth factor‐β signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res Ther 2005; 7: R1338 – 47.
dc.identifier.citedreferenceBobacz K, Gruber R, Soleiman A, Erlacher L, Smolen JS, Graninger WB. Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro. Arthritis Rheum 2003; 48: 2501 – 8.
dc.identifier.citedreferenceGreene MA, Loeser RF. Aging‐related inflammation in osteoarthritis. Osteoarthritis Cartilage 2015; 23: 1966 – 71.
dc.identifier.citedreferenceLeng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, et al. MIF signal transduction initiated by binding to CD74. J Exp Med 2003; 197: 1467 – 76.
dc.identifier.citedreferenceRajasekaran D, Zierow S, Syed M, Bucala R, Bhandari V, Lolis EJ. Targeting distinct tautomerase sites of D‐DT and MIF with a single molecule for inhibition of neutrophil lung recruitment. FASEB J 2014; 28: 4961 – 71.
dc.identifier.citedreferenceMitchell RA, Liao H, Chesney J, Fingerle‐Rowson G, Baugh J, David J, et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci U S A 2002; 99: 345 – 50.
dc.identifier.citedreferenceCalandra T, Bernhagen J, Mitchell RA, Bucala R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med 1994; 179: 1895 – 902.
dc.identifier.citedreferenceOnodera S, Kaneda K, Mizue Y, Koyama Y, Fujinaga M, Nishihira J. Macrophage migration inhibitory factor up‐regulates expression of matrix metalloproteinases in synovial fibroblasts of rheumatoid arthritis. J Biol Chem 2000; 275: 444 – 50.
dc.identifier.citedreferenceOnodera S, Tanji H, Suzuki K, Kaneda K, Mizue Y, Sagawa A, et al. High expression of macrophage migration inhibitory factor in the synovial tissues of rheumatoid joints. Cytokine 1999; 11: 163 – 7.
dc.identifier.citedreferenceGu R, Santos LL, Ngo D, Fan H, Singh PP, Fingerle‐Rowson G, et al. Macrophage migration inhibitory factor is essential for osteoclastogenic mechanisms in vitro and in vivo mouse model of arthritis. Cytokine 2015; 72: 135 – 45.
dc.identifier.citedreferenceFoote A, Briganti EM, Kipen Y, Santos L, Leech M, Morand EF. Macrophage migration inhibitory factor in systemic lupus erythematosus. J Rheumatol 2004; 31: 268 – 73.
dc.identifier.citedreferenceHoi AY, Hickey MJ, Hall P, Yamana J, O’Sullivan KM, Santos LL, et al. Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice. J Immunol 2006; 177: 5687 – 96.
dc.identifier.citedreferenceLiu M, Hu C. Association of MIF in serum and synovial fluid with severity of knee osteoarthritis. Clin Biochem 2012; 45: 737 – 9.
dc.identifier.citedreferenceHarper JM, Wilkinson JE, Miller RA. Macrophage migration inhibitory factor‐knockout mice are long lived and respond to caloric restriction. FASEB J 2010; 24: 2436 – 42.
dc.identifier.citedreferenceBernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 2007; 13: 587 – 96.
dc.identifier.citedreferenceLoeser RF, Pacione CA, Chubinskaya S. The combination of insulin‐like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheumatol 2003; 48: 2188 – 96.
dc.identifier.citedreferenceYin W, Park JI, Loeser RF. Oxidative stress inhibits insulin‐like growth factor‐I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3‐Kinase‐Akt and MEK‐ERK MAPK signaling pathways. J Biol Chem 2009; 284: 31972 – 31981.
dc.identifier.citedreferenceLoeser RF, Olex AL, McNulty MA, Carlson CS, Callahan MF, Ferguson CM, et al. Microarray analysis reveals age‐related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum 2012; 64: 705 – 17.
dc.identifier.citedreferenceLeng L, Chen L, Fan J, Greven D, Arjona A, Du X, et al. A small‐molecule macrophage migration inhibitory factor antagonist protects against glomerulonephritis in lupus‐prone NZB/NZW F1 and MRL/lpr mice. J Immunol 2011; 186: 527 – 38.
dc.identifier.citedreferenceMcNulty MA, Loeser RF, Davey C, Callahan MF, Ferguson CM, Carlson CS. A comprehensive histological assessment of osteoarthritis lesions in mice. Cartilage 2011; 2: 354 – 63.
dc.identifier.citedreferenceMiller RE, Tran PB, Das R, Ghoreishi‐Haack N, Ren D, Miller RJ, et al. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc Natl Acad Sci U S A 2012; 109: 20602 – 7.
dc.identifier.citedreferenceSchelbergen RF, de Munter W, van den Bosch MH, Lafeber FP, Sloetjes A, Vogl T, et al. Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis. Ann Rheum Dis 2016; 75: 218 – 25.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.