Show simple item record

Scenario Discovery with Multiple Criteria: An Evaluation of the Robust Decision‐Making Framework for Climate Change Adaptation

dc.contributor.authorShortridge, Julie E.
dc.contributor.authorGuikema, Seth D.
dc.date.accessioned2017-02-02T22:00:56Z
dc.date.available2018-01-08T19:47:53Zen
dc.date.issued2016-12
dc.identifier.citationShortridge, Julie E.; Guikema, Seth D. (2016). "Scenario Discovery with Multiple Criteria: An Evaluation of the Robust Decision‐Making Framework for Climate Change Adaptation." Risk Analysis 36(12): 2298-2312.
dc.identifier.issn0272-4332
dc.identifier.issn1539-6924
dc.identifier.urihttps://hdl.handle.net/2027.42/135989
dc.publisherRAND
dc.publisherWiley Periodicals, Inc.
dc.subject.otherrobust decision making
dc.subject.otherClimate change
dc.subject.otherdeep uncertainty
dc.titleScenario Discovery with Multiple Criteria: An Evaluation of the Robust Decision‐Making Framework for Climate Change Adaptation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBusiness (General)
dc.subject.hlbtoplevelBusiness and Economics
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135989/1/risa12582_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135989/2/risa12582.pdf
dc.identifier.doi10.1111/risa.12582
dc.identifier.sourceRisk Analysis
dc.identifier.citedreferenceEasterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO. Climate extremes: Observations, modeling, and impacts. Science, 2000; 289 ( 5487 ): 2068 – 2074.
dc.identifier.citedreferenceBreiman L. Random forests. Machine Learning. 2001; 45 ( 1 ): 5 – 32.
dc.identifier.citedreferenceShortridge JE, Guikema SD, and Zaitchik BF. Empirical streamflow simulation for water resource management in data‐scarce seasonal watersheds. Hydrology and Earth Systems Sciences. Discussion paper available at: http://www.hydrol-earth-syst-sci-discuss.net/hess-2015-413/, Accessed February 7, 2016.
dc.identifier.citedreferenceSieber J, Purkey D. WEAP (Water Evaluation and Planning System) User Guide. Somerville, MA: Stockholm Environment Institute, 2015. Available at: http://www.weap21.org/, Accessed May 1, 2015.
dc.identifier.citedreferenceBarnett DN, Brown SJ, Murphy JM, Sexton DMH, Webb MJ. Quantifying uncertainty in changes in extreme event frequency in response to doubled CO 2 using a large ensemble of GCM simulations. Climate Dynamics, 2006; 26 ( 5 ): 489 – 511.
dc.identifier.citedreferenceKharin VV, Zwiers FW. Estimating extremes in transient climate change simulations. Journal of Climate, 2005; 18 ( 8 ): 1156 – 1173.
dc.identifier.citedreferenceWater Works Design & Supervision Enterprise (WWDSE), Tahal Group. Irrigation and Drainage Projects in Lake Tana Sub‐Basin: Gilgel Abbay Final Feasibility and Detailed Design Report, 2009.
dc.identifier.citedreferenceWater Works Design & Supervision Enterprise (WWDSE). Gumara Irrigation Project Feasibility Study Report, 2008.
dc.identifier.citedreferenceBankes S. Exploratory modeling for policy analysis. Operations Research, 1993; 41 ( 3 ): 435 – 449.
dc.identifier.citedreferenceMcJeon HC, Clarke L, Kyle P, Wise M, Hackbarth A, Bryant BP, Lempert RJ. Technology interactions among low‐carbon energy technologies: What can we learn from a large number of scenarios? Energy Economics, 2011; 33 ( 4 ): 619 – 631.
dc.identifier.citedreferenceGleick PH. Methods for evaluating the regional hydrologic impacts of global climatic changes. Journal of Hydrology, 1986; 88 ( 1–2 ): 97 – 116.
dc.identifier.citedreferencePenman HL. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1948; 193 ( 1032 ): 120 – 145.
dc.identifier.citedreferenceKebede S, Travi Y, Alemayehu T, Marc V. Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. Journal of Hydrology, 2006; 316 ( 1‐4 ): 233 – 247.
dc.identifier.citedreferenceSMEC International. Hydrological Study of the Tana‐Beles Sub‐Basins, 2008.
dc.identifier.citedreferenceBryant BJ. sdtoolkit: Scenario discovery tools to support robust decision making. R package version 2.33‐1, 2014. Available at: http://CRAN.R‐project.org/package=sdtoolkit, Accessed January 1, 2015.
dc.identifier.citedreferenceBryant BP, Lempert RJ. Thinking inside the box: A participatory, computer‐assisted approach to scenario discovery. Technological Forecasting and Social Change, 2010; 77 ( 1 ): 34 – 49.
dc.identifier.citedreferenceStillwell WG, Edwards W. Rank Weighting in Multiattribute Utility Decision Making: Avoiding the Pitfalls of Equal Weights. Los Angeles, CA: University of Southern California Social Science Research Institute, 1979.
dc.identifier.citedreferenceDalal S, Han B, Lempert R, Jaycocks A, Hackbarth A. Improving scenario discovery using orthogonal rotations. Environmental Modelling & Software, 2013; 48: 49 – 64.
dc.identifier.citedreferenceCox LAT. Confronting deep uncertainties in risk analysis. Risk Analysis, 2012; 32 ( 10 ): 1607 – 1629.
dc.identifier.citedreferenceAven T. On how to deal with deep uncertainties in a risk assessment and management context. Risk Analysis, 2013; 33 ( 12 ): 2082 – 2091.
dc.identifier.citedreferenceKunreuther H, Heal G, Allen M, Edenhofer O, Field CB, Yohe G. Risk management and climate change. Nature Climate Change, 2013 24; 3 ( 5 ): 447 – 450.
dc.identifier.citedreferenceWeaver CP, Lempert RJ, Brown C, Hall JA, Revell D, Sarewitz D. Improving the contribution of climate model information to decision making: The value and demands of robust decision frameworks. Wiley Interdisciplinary Reviews: Climate Change, 2013; 4 ( 1 ): 39 – 60.
dc.identifier.citedreferenceLempert RJ, Groves DG, Popper SW, Bankes SC. A general, analytic method for generating robust strategies and narrative scenarios. Management Science, 2006; 52 ( 4 ): 514 – 528.
dc.identifier.citedreferenceBrown C, Ghile Y, Laverty M, Li K. Decision scaling: Linking bottom‐up vulnerability analysis with climate projections in the water sector. Water Resources Research, 2012; 48 ( 9 ): W09537.
dc.identifier.citedreferenceBen‐Haim Y. Robust rationality and decisions under severe uncertainty. Journal of the Franklin Institute, 2000; 337 ( 2 ): 171 – 199.
dc.identifier.citedreferenceLempert RJ, Collins MT. Managing the risk of uncertain threshold responses: Comparison of robust, optimum, and precautionary approaches. Risk Analysis, 2007; 27 ( 4 ): 1009 – 1026.
dc.identifier.citedreferenceHallegatte S, Rentschler J. Risk management for development‐assessing obstacles and prioritizing action. Risk Analysis, 2015; 35 ( 2 ): 193 – 210.
dc.identifier.citedreferenceLempert RJ, Groves DG. Identifying and evaluating robust adaptive policy responses to climate change for water management agencies in the American West. Technological Forecasting and Social Change, 2010; 77 ( 6 ): 960 – 974.
dc.identifier.citedreferenceLempert R, Kalra N, Peyraud S, Mao Z, Tan SB, Cira D, Lotsch A. Ensuring robust flood risk management in Ho Chi Minh City. World Bank Policy Research Working Paper, 2013. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2271955. Accessed August 10, 2015.
dc.identifier.citedreferenceGroves DG, Fischbach JR, Bloom E, Knopman DS, Keefe R. Adapting to a Changing Colorado River: Making Future Water Deliveries More Reliable Through Robust Management Strategies. Santa Monica, CA: RAND, 2013.
dc.identifier.citedreferenceGroves DG, Bloom E. Robust Water‐Management Strategies for the California Water Plan Update, 2013. RR‐182‐DWR. Santa Monica, CA: RAND Corporation, 2013. Available at: http://www.waterplan.water.ca.gov/docs/swan/2013/RR182_FNLCompiled.pdf, Accessed April 16, 2015.
dc.identifier.citedreferenceLempert R. Scenarios that illuminate vulnerabilities and robust responses. Climatic Change, 2013; 1 – 20.
dc.identifier.citedreferenceFriedman JH, Fisher NI. Bump hunting in high‐dimensional data. Statistics and Computing, 1999; 9 ( 2 ): 123 – 143.
dc.identifier.citedreferenceLempert R, Sriver RL, Keller K. Characterizing Uncertain Sea Level Rise Projections to Support Investment Decisions. California Energy Commission, 2012.
dc.identifier.citedreferenceGroves DG, Water Research Foundation, New York State Energy Research and Development Authority, WSAA (Association). Developing Robust Strategies for Climate Change and Other Risks: A Water Utility Framework, 2014. Available at: http://www.jstor.org/stable/10.7249/j.ctt14bs4mg, Accessed May 12, 2015.
dc.identifier.citedreferenceHall JW, Lempert RJ, Keller K, Hackbarth A, Mijere C, McInerney DJ. Robust climate policies under uncertainty: A comparison of robust decision making and info‐gap methods. Risk Analysis, 2012; 32 ( 10 ): 1657 – 1672.
dc.identifier.citedreferencePopper SW, editor. Natural Gas and Israel’s Energy Future: Near‐Term Decisions from a Strategic Perspective. Santa Monica, CA: RAND, 2009.
dc.identifier.citedreferenceGroves DG, Bloom E, Johnson DR, Yates D, Mehta V. Addressing Climate Change in Local Water Agency Plans: Demonstrating a Simplified Robust Decision Making Approach in the California Sierra Foothills. Rand Corporation, 2013.
dc.identifier.citedreferenceHerman JD, Zeff HB, Reed PM, Characklis GW. Beyond optimality: Multistakeholder robustness tradeoffs for regional water portfolio planning under deep uncertainty. Water Resources Research, 2014; 50 ( 10 ): 7692 – 7713.
dc.identifier.citedreferenceHerman JD, Zeff HB, Characklis GW. How should robustness be defined for water systems planning under change? Journal of Water Resources Planning and Management, 2015; 0 ( 0 ): 04015012.
dc.identifier.citedreferenceKasprzyk JR, Nataraj S, Reed PM, Lempert RJ. Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software, 2013; 42: 55 – 71.
dc.identifier.citedreferenceAlemayehu T, McCartney M, Kebede S. The water resource implications of planned development in the Lake Tana catchment, Ethiopia. Ecohydrology & Hydrobiology, 2010; 10 ( 2‐4 ): 211 – 221.
dc.identifier.citedreferenceAchenef H, Tilahun A, Molla B. Tana Sub Basin Initial Scenarios and Indicators Development Report. Bahir Dar, Ethiopia: Tana Sub Basin Organization, 2013.
dc.identifier.citedreferenceRientjes THM, Haile AT, Kebede E, Mannaerts CMM, Habib E, Steenhuis TS. Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin—Ethiopia. Hydrology and Earth System Sciences, 2011; 15 ( 6 ): 1979 – 1989.
dc.identifier.citedreferenceGebrehiwot SG, Taye A, Bishop K. Forest cover and stream flow in a headwater of the Blue Nile: Complementing observational data analysis with community perception. AMBIO, 2010; 39 ( 4 ): 284 – 294.
dc.identifier.citedreferenceGarede NM, Minale AS. Land use/cover dynamics in Ribb Watershed, North Western Ethiopia. Journal of Natural Sciences Research, 2014; 4 ( 16 ): 9 – 16.
dc.identifier.citedreferenceVan Oldenborgh G., Collins M, Arblaster J, Christensen JH, Marotzke S., Power SB, et al. Annex I: Atlas of global and regional climate projections. Pp. 1311 – 1394 in Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press, 2013.
dc.identifier.citedreferenceHarris I, Jones PD, Osborn TJ, Lister DH. Updated high‐resolution grids of monthly climatic observations—The CRU TS3.10 dataset. International Journal of Climatology. 2014; 34 ( 3 ): 623 – 642.
dc.identifier.citedreferenceQuinlan JR. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence. Singapore: World Scientific, 1992.
dc.identifier.citedreferenceRipley BD. Pattern Recognition and Neural Networks. Cambridge, UK: Cambridge University Press, 1996.
dc.identifier.citedreferenceHastie T, Tibshirani R. Generalized Additive Models. London: Chapman, Hall, 1990.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.