Show simple item record

Fracture healing physiology and the quest for therapies for delayed healing and nonunion

dc.contributor.authorKostenuik, Paul
dc.contributor.authorMirza, Faisal M.
dc.date.accessioned2017-02-02T22:01:43Z
dc.date.available2018-04-02T18:03:23Zen
dc.date.issued2017-02
dc.identifier.citationKostenuik, Paul; Mirza, Faisal M. (2017). "Fracture healing physiology and the quest for therapies for delayed healing and nonunion." Journal of Orthopaedic Research 35(2): 213-223.
dc.identifier.issn0736-0266
dc.identifier.issn1554-527X
dc.identifier.urihttps://hdl.handle.net/2027.42/136027
dc.description.abstractDelayed healing and nonunion of fractures represent enormous burdens to patients and healthcare systems. There are currently no approved pharmacological agents for the treatment of established nonunions, or for the acceleration of fracture healing, and no pharmacological agents are approved for promoting the healing of closed fractures. Yet several pharmacologic agents have the potential to enhance some aspects of fracture healing. In preclinical studies, various agents working across a broad spectrum of molecular pathways can produce larger, denser and stronger fracture calluses. However, untreated control animals in most of these studies also demonstrate robust structural and biomechanical healing, leaving unclear how these interventions might alter the healing of recalcitrant fractures in humans. This review describes the physiology of fracture healing, with a focus on aspects of natural repair that may be pharmacologically augmented to prevent or treat delayed or nonunion fractures (collectively referred to as DNFs). The agents covered in this review include recombinant BMPs, PTH/PTHrP receptor agonists, activators of Wnt/β‐catenin signaling, and recombinant FGF‐2. Agents from these therapeutic classes have undergone extensive preclinical testing and progressed to clinical fracture healing trials. Each can promote bone formation, which is important for the stability of bridged calluses, and some but not all can also promote cartilage formation, which may be critical for the initial bridging and subsequent stabilization of fractures. Appropriately timed stimulation of chondrogenesis and osteogenesis in the fracture callus may be a more effective approach for preventing or treating DNFs compared with stimulation of osteogenesis alone. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:213–223, 2017.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherchondrogenesis
dc.subject.otherdelayed union
dc.subject.othernonunion fracture
dc.subject.otherosteogenesis
dc.subject.otherfracture healing
dc.titleFracture healing physiology and the quest for therapies for delayed healing and nonunion
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136027/1/jor23460.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136027/2/jor23460_am.pdf
dc.identifier.doi10.1002/jor.23460
dc.identifier.sourceJournal of Orthopaedic Research
dc.identifier.citedreferenceWaters RV, Gamradt SC, Asnis P, et al. 2000. Systemic corticosteroids inhibit bone healing in a rabbit ulnar osteotomy model. Acta Orthop Scand 71: 316 – 321.
dc.identifier.citedreferenceTaylor S, Ominsky MS, Hu R, et al. 2016. Time‐dependent cellular and transcriptional changes in the osteoblast lineage associated with sclerostin antibody treatment in ovariectomized rats. Bone 84: 148 – 159.
dc.identifier.citedreferenceFlorio M, Gunasekaran K, Stolina M, et al. 2016. A bispecific antibody targeting sclerostin and DKK‐1 promotes bone mass accrual and fracture repair. Nat Commun 7: 11505.
dc.identifier.citedreferencevan Bezooijen RL, Roelen BA, Visser A, et al. 2004. Sclerostin is an osteocyte‐expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199: 805 – 814.
dc.identifier.citedreferenceMcClung MR, Grauer A, Boonen S, et al. 2014. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370: 412 – 420.
dc.identifier.citedreferenceAgholme F, Isaksson H, Kuhstoss S, et al. 2011. The effects of Dickkopf‐1 antibody on metaphyseal bone and implant fixation under different loading conditions. Bone 48: 988 – 996.
dc.identifier.citedreferenceFeng G, Chang‐Qing Z, Yi‐Min C, et al. 2015. Systemic administration of sclerostin monoclonal antibody accelerates fracture healing in the femoral osteotomy model of young rats. Int Immunopharmacol 24: 7 – 13.
dc.identifier.citedreferenceMorse A, Yu NY, Peacock L, et al. 2015. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength. Bone 71: 155 – 163.
dc.identifier.citedreferenceLi C, Ominsky MS, Tan HL, et al. 2011. Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene. Bone 49: 1178 – 1185.
dc.identifier.citedreferenceHill TP, Spater D, Taketo MM, et al. 2005. Canonical Wnt/beta‐catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8: 727 – 738.
dc.identifier.citedreferenceHuang Y, Zhang X, Du K, et al. 2012. Inhibition of beta‐catenin signaling in chondrocytes induces delayed fracture healing in mice. J Orthop Res 30: 304 – 310.
dc.identifier.citedreferenceMinear S, Leucht P, Jiang J, et al. 2010. Wnt proteins promote bone regeneration. Sci TranslMed 2:29ra 30.
dc.identifier.citedreferenceAlaee F, Virk MS, Tang H, et al. 2014. Evaluation of the effects of systemic treatment with a sclerostin neutralizing antibody on bone repair in a rat femoral defect model. J Orthop Res 32: 197 – 203.
dc.identifier.citedreferencehttp://www.sec.gov/Archives/edgar/data/318154/000144530513000364/amgn–12312012 × 10k.htm
dc.identifier.citedreferencePower RA, Iwaniec UT, Magee KA, et al. 2004. Basic fibroblast growth factor has rapid bone anabolic effects in ovariectomized rats. Osteoporos Int 15: 716 – 723.
dc.identifier.citedreferenceWroblewski J, Edwall‐Arvidsson C. 1995. Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiation. J Bone Miner Res 10: 735 – 742.
dc.identifier.citedreferenceKawaguchi H, Nakamura K, Tabata Y, et al. 2001. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor‐2. J Clin Endocrinol Metab 86: 875 – 880.
dc.identifier.citedreferenceKawaguchi H, Oka H, Jingushi S, et al. 2010. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: a randomized, placebo‐controlled trial. J Bone Miner Res 25: 2735 – 2743.
dc.identifier.citedreferencePountos I, Georgouli T, Pneumaticos S, et al. 2013. Fracture non‐union: can biomarkers predict outcome ? Injury 44: 1725 – 1732.
dc.identifier.citedreferenceHadjiargyrou M, Lombardo F, Zhao S, et al. 2002. Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 277: 30177 – 30182.
dc.identifier.citedreferenceLu C, Miclau T, Hu D, et al. 2007. Ischemia leads to delayed union during fracture healing: a mouse model. J Orthop Res 25: 51 – 61.
dc.identifier.citedreferenceHanratty BM, Ryaby JT, Pan XH, et al. 2009. Thrombin related peptide TP508 promoted fracture repair in a mouse high energy fracture model. J Orthop Surg Res 4: 1.
dc.identifier.citedreferenceKokubu T, Hak DJ, Hazelwood SJ, et al. 2003. Development of an atrophic nonunion model and comparison to a closed healing fracture in rat femur. J Orthop Res 21: 503 – 510.
dc.identifier.citedreferenceMosekilde L, Bak B. 1993. The effects of growth hormone on fracture healing in rats: a histological description. Bone 14: 19 – 27.
dc.identifier.citedreferenceTzioupis C, Giannoudis PV. 2007. Prevalence of long‐bone non‐unions. Injury 38: S3 – 9.
dc.identifier.citedreferenceEinhorn TA, Gerstenfeld LC. 2015. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11: 45 – 54.
dc.identifier.citedreferenceWestgeest J, Weber D, Dulai SK, et al. 2016. Factors associated with development of nonunion or delayed healing after an open long bone fracture: a prospective cohort study of 736 subjects. J Orthop Trauma 30: 149 – 155.
dc.identifier.citedreferenceMarsh D. 1998. Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res S22 – 30.
dc.identifier.citedreferenceAndrew J, Hoyland J, Andrew S, et al. 1993. Demonstration of TGF‐b1 mRNA by in situ hybridization in normal human fracture healing. Calcif Tissue Int 52: 74 – 78.
dc.identifier.citedreferenceGiannoudis PV, MacDonald DA, Matthews SJ, et al. 2000. Nonunion of the femoral diaphysis. The influence of reaming and non‐steroidal anti‐inflammatory drugs. J Bone Joint Surg Br 82: 655 – 658.
dc.identifier.citedreferenceReinke S, Geissler S, Taylor WR, et al. 2013. Terminally differentiated CD8(+) T cells negatively affect bone regeneration in humans. Sci Transl Med 5: 177ra136.
dc.identifier.citedreferenceGustilo RB, Mendoza RM, Williams DN. 1984. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma 24: 742 – 746.
dc.identifier.citedreferenceReverte MM, Dimitriou R, Kanakaris NK, et al. 2011. What is the effect of compartment syndrome and fasciotomies on fracture healing in tibial fractures ? Injury 42: 1402 – 1407.
dc.identifier.citedreferenceCourt‐Brown C, McQueen M. 1987. Compartment syndrome delays tibial union. Acta Orthop Scand 58: 249 – 252.
dc.identifier.citedreferenceHak DJ, Fitzpatrick D, Bishop JA, et al. 2014. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury 45: S3 – S7.
dc.identifier.citedreferenceKanakaris NK, Giannoudis PV. 2007. The health economics of the treatment of long‐bone non‐unions. Injury 38: S77 – S84.
dc.identifier.citedreferenceSchottel PC, O’Connor DP, Brinker MR. 2015. Time trade‐off as a measure of health‐related quality of life: long bone nonunions have a devastating impact. J Bone Joint Surg Am 97: 1406 – 1410.
dc.identifier.citedreferenceTagil M, McDonald MM, Morse A, et al. 2010. Intermittent PTH(1‐34) does not increase union rates in open rat femoral fractures and exhibits attenuated anabolic effects compared to closed fractures. Bone 46: 852 – 859.
dc.identifier.citedreferenceGerstenfeld LC, Sacks DJ, Pelis M, et al. 2009. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res 24: 196 – 208.
dc.identifier.citedreferenceBonnarens F, Einhorn T. 1984. Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2: 97 – 101.
dc.identifier.citedreferenceBais M, McLean J, Sebastiani P, et al. 2009. Transcriptional analysis of fracture healing and the induction of embryonic stem cell‐related genes. PLoS ONE 4: e5393.
dc.identifier.citedreferenceHausman M, Schaffler M, Majeska R. 2001. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29: 560 – 564.
dc.identifier.citedreferenceMeyer R, Tsahakis P, Martin D, et al. 2001. Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res 19: 428 – 435.
dc.identifier.citedreferencehttp://www.accessdata.fda.gov/cdrh_docs/pdf/h010002a.pdf. 2001. FDA Approval of OP‐1 Implant.
dc.identifier.citedreferenceVirk MS, Alaee F, Tang H, et al. 2013. Systemic administration of sclerostin antibody enhances bone repair in a critical‐sized femoral defect in a rat model. J Bone Joint Surg Am 95: 694 – 701.
dc.identifier.citedreferenceBahney CS, Hu DP, Taylor AJ, et al. 2014. Stem cell‐derived endochondral cartilage stimulates bone healing by tissue transformation. J Bone Miner Res 29: 1269 – 1282.
dc.identifier.citedreferenceLienau J, Schmidt‐Bleek K, Peters A, et al. 2009. Differential regulation of blood vessel formation between standard and delayed bone healing. J Orthop Res 27: 1133 – 1140.
dc.identifier.citedreferenceNaik AA, Xie C, Zuscik MJ, et al. 2009. Reduced COX‐2 expression in aged mice is associated with impaired fracture healing. J Bone Miner Res 24: 251 – 264.
dc.identifier.citedreferenceJirarattanaphochai K, Kiat TS, Chua D, et al. 1993. The effect of methylprednisolone on porcine bone morphogenetic protein in fracture healing. An experimental allograft model in rabbits. Clin Orthop Relat Res 292: 366 – 375.
dc.identifier.citedreferenceDent‐Acosta RE, Storm N, Steiner RS, et al. 2012. The tactics of modern‐day regulatory trials. J Bone Joint Surg Am 94: 39 – 44.
dc.identifier.citedreferencehttp://www.fda.gov/ohrms/dockets/dailys/00/mar00/031300/aav0001.pdf. 2000. FDA Approval Order for Exogen.
dc.identifier.citedreferenceLyon T, Scheele W, Bhandari M, et al. 2013. Efficacy and safety of recombinant human bone morphogenetic protein‐2/calcium phosphate matrix for closed tibial diaphyseal fracture: a double‐blind, randomized, controlled phase‐II/III trial. J Bone Joint Surg Am 95: 2088 – 2096.
dc.identifier.citedreferenceAspenberg P, Genant HK, Johansson T, et al. 2010. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double‐blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 25: 404 – 414.
dc.identifier.citedreferenceRaschke M, Rasmussen MH, Govender S, et al. 2007. Effects of growth hormone in patients with tibial fracture: a randomised, double‐blind, placebo‐controlled clinical trial. Eur J Endocrinol 156: 341 – 351.
dc.identifier.citedreferenceSimon AM, Manigrasso MB, O’Connor JP. 2002. Cyclo‐oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res 17: 963 – 976.
dc.identifier.citedreferenceKayal RA, Tsatsas D, Bauer MA, et al. 2007. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res 22: 560 – 568.
dc.identifier.citedreferenceShimoaka T, Kamekura S, Chikuda H, et al. 2004. Impairment of bone healing by insulin receptor substrate‐1 deficiency. J Biol Chem 279: 15314 – 15322.
dc.identifier.citedreferenceKronenberg HM. 2003. Developmental regulation of the growth plate. Nature 423: 332 – 336.
dc.identifier.citedreferenceAmizuka N, Warshawsky H, Henderson JE, et al. 1994. Parathyroid hormone‐related peptide‐depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126: 1611 – 1623.
dc.identifier.citedreferenceWang YH, Qiu Y, Han XD, et al. 2013. Haploinsufficiency of endogenous parathyroid hormone‐related peptide impairs bone fracture healing. Clin Exp Pharmacol Physiol 40: 715 – 723.
dc.identifier.citedreferenceWang M, Nasiri AR, Broadus AE, et al. 2015. Periosteal PTHrP regulates cortical bone remodeling during fracture healing. Bone 81: 104 – 111.
dc.identifier.citedreferenceNakazawa T, Nakajima A, Shiomi K, et al. 2005. Effects of low‐dose, intermittent treatment with recombinant human parathyroid hormone (1‐34) on chondrogenesis in a model of experimental fracture healing. Bone 37: 711 – 719.
dc.identifier.citedreferenceEpari DR, Schell H, Bail HJ, et al. 2006. Instability prolongs the chondral phase during bone healing in sheep. Bone 38: 864 – 870.
dc.identifier.citedreferenceMcDonald MM, Morse A, Mikulec K, et al. 2013. Matrix metalloproteinase‐driven endochondral fracture union proceeds independently of osteoclast activity. J Bone Miner Res 28: 1550 – 1560.
dc.identifier.citedreferenceLenehan T, Balligand M, Nunamaker D, et al. 1985. Effect of EHDP on fracture healing in dogs. J Orthop Res 3: 499 – 507.
dc.identifier.citedreferenceUrist MR. 1965. Bone: formation by autoinduction. Science 150: 893 – 899.
dc.identifier.citedreferenceSusperregui AR, Vinals F, Ho PW, et al. 2008. BMP‐2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells. J Cell Physiol 216: 144 – 152.
dc.identifier.citedreferenceIwasaki M, Nakahara H, Nakase T, et al. 1994. Bone morphogentic protein 2 stimulates osteogenesis but does not affect chondrogenesis in osteochondrogenic differentiation of periosteum‐derived cells. J Bone Miner Res 9: 1195 – 1204.
dc.identifier.citedreferenceLu C, Xing Z, Yu YY, et al. 2010. Recombinant human bone morphogenetic protein‐7 enhances fracture healing in an ischemic environment. J Orthop Res 28: 687 – 696.
dc.identifier.citedreferenceYu YY, Lieu S, Lu C, et al. 2010. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair. Bone 47: 65 – 73.
dc.identifier.citedreferenceWang EA, Rosen V, D’Alessandro JS, et al. 1990. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA 87: 2220 – 2224.
dc.identifier.citedreferenceIntini G, Nyman JS. 2015. Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity. Bone 75: 151 – 160.
dc.identifier.citedreferenceFriedlaender GE, Perry CR, Cole JD, et al. 2001. Osteogenic protein‐1 (bone morphogenetic protein‐7) in the treatment of tibial nonunions. J Bone Joint Surg Am 83‐A Suppl 1: S151 – S158.
dc.identifier.citedreferencehttp://www.accessdata.fda.gov/cdrh_docs/pdf/P000054b.pdf. 2004. FDA Summary of Safety and Effectiveness Data.
dc.identifier.citedreferenceGovender S, Csimma C, Genant HK, et al. 2002. Recombinant human bone morphogenetic protein‐2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 84A: 2123 – 2134.
dc.identifier.citedreferenceAro HT, Govender S, Patel AD, et al. 2011. Recombinant human bone morphogenetic protein‐2: a randomized trial in open tibial fractures treated with reamed nail fixation. J Bone Joint Surg Am 93: 801 – 808.
dc.identifier.citedreferenceCarragee EJ, Hurwitz EL, Weiner BK. 2011. A critical review of recombinant human bone morphogenetic protein‐2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11: 471 – 491.
dc.identifier.citedreferenceOng KL, Villarraga ML, Lau E, et al. 2010. Off‐label use of bone morphogenetic proteins in the United States using administrative data. Spine (PhilaPa 1976) 35: 1794 – 1800.
dc.identifier.citedreferenceCupp ME, Nayak SK, Adem AS, et al. 2013. Parathyroid hormone (PTH) and PTH‐related peptide domains contributing to activation of different PTH receptor‐mediated signaling pathways. J Pharmacol Exp Ther 345: 404 – 418.
dc.identifier.citedreferenceMiao D, He B, Lanske B, et al. 2004. Skeletal abnormalities in Pth‐null mice are influenced by dietary calcium. Endocrinology 145: 2046 – 2053.
dc.identifier.citedreferenceChan FK, Tiu SC, Choi KL, et al. 2003. Increased bone mineral density in patients with chronic hypoparathyroidism. J Clin Endocrinol Metab 88: 3155 – 3159.
dc.identifier.citedreferenceWeir EC, Terwilliger G, Sartori L, et al. 1992. Synthetic parathyroid hormone‐like protein (1‐74) is anabolic for bone in vivo. Calcif Tissue Int 51: 30 – 34.
dc.identifier.citedreferenceChouinard L, Lesage E, Smith SY, et al. 2014. The long term effects of abaloparatide (BA058) on bone histomorphometry in osteopenic rats. J Bone Miner Res 29: S468.
dc.identifier.citedreferenceAmizuka N, Karaplis AC, Henderson JE, et al. 1996. Haploinsufficiency of parathyroid hormone‐related peptide (PTHrP) results in abnormal postnatal bone development. Dev Biol 175: 166 – 176.
dc.identifier.citedreferenceRen Y, Liu B, Feng Y, et al. 2011. Endogenous PTH deficiency impairs fracture healing and impedes the fracture‐healing efficacy of exogenous PTH(1–34). PLoS ONE 6: e23060.
dc.identifier.citedreferenceAlkhiary YM, Gerstenfeld LC, Krall E, et al. 2005. Enhancement of experimental fracture‐healing by systemic administration of recombinant human parathyroid hormone (PTH 1‐34). J Bone Joint Surg Am 87: 731 – 741.
dc.identifier.citedreferenceKakar S, Einhorn TA, Vora S, et al. 2007. Enhanced chondrogenesis and Wnt signaling in PTH‐treated fractures. J Bone Miner Res 22: 1903 – 1912.
dc.identifier.citedreferenceBorges JL, Freitas A, Bilezikian JP. 2013. Accelerated fracture healing with teriparatide. Arq Bras Endocrinol Metabol 57: 153 – 156.
dc.identifier.citedreferenceOteo‐Alvaro A, Moreno E. 2010. Atrophic humeral shaft nonunion treated with teriparatide (rh PTH 1‐34): a case report. J Shoulder Elbow Surg 19: e22 – 28.
dc.identifier.citedreferenceUemura T, Okada M, Yokoi T, et al. 2015. Successful bone healing of nonunion after ulnar shortening osteotomy for smokers treated with teriparatide. Orthopedics 38: e733 – 737.
dc.identifier.citedreferencePeichl P, Holzer LA, Maier R, et al. 2011. Parathyroid hormone 1‐84 accelerates fracture‐healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am 93: 1583 – 1587.
dc.identifier.citedreferenceJohansson T. 2016. PTH 1‐34 (teriparatide) may not improve healing in proximal humerus fractures. A randomized, controlled study of 40 patients. Acta Orthop 87: 79 – 82.
dc.identifier.citedreferenceMartin T. 2005. Osteoblast‐derived PTHrP is a physiological regulator of bone formation. J Clin Invest 115: 2322 – 2324.
dc.identifier.citedreferenceMiao D, He B, Karaplis A, et al. 2002. Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 109: 1173 – 1182.
dc.identifier.citedreferenceTsukazaki T, Ohtsuru A, Namba H, et al. 1996. Parathyroid hormone‐related protein (PTHrP) action in rat articular chondrocytes: comparison of PTH(1‐34), PTHrP(1‐34), PTHrP(1‐141), PTHrP(100‐114) and antisense oligonucleotides against PTHrP. J Endocrinol 150: 359 – 368.
dc.identifier.citedreferenceZerega B, Cermelli S, Bianco P, et al. 1999. Parathyroid hormone [PTH(1‐34)] and parathyroid hormone‐related protein [PTHrP(1‐34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast‐like cells. J Bone Miner Res 14: 1281 – 1289.
dc.identifier.citedreferenceOkazaki K, Jingushi S, Ikenoue T, et al. 2003. Expression of parathyroid hormone‐related peptide and insulin‐like growth factor I during rat fracture healing. J Orthop Res 21: 511 – 520.
dc.identifier.citedreferenceKartsogiannis V, Moseley J, McKelvie B, et al. 1997. Temporal expression of PTHrP during endochondral bone formation in mouse and intramembranous bone formation in an in vivo rabbit model. Bone 21: 385 – 392.
dc.identifier.citedreferenceWang M, VanHouten JN, Nasiri AR, et al. 2014. Periosteal PTHrP regulates cortical bone modeling during linear growth in mice. J Anat 225: 71 – 82.
dc.identifier.citedreferenceLeder BZ, O’Dea LS, Zanchetta JR, et al. 2015. Effects of abaloparatide, a human parathyroid hormone‐related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 100: 697 – 706.
dc.identifier.citedreferenceBostrom MP, Gamradt SC, Asnis P, et al. 2000. Parathyroid hormone‐related protein analog RS‐66271 is an effective therapy for impaired bone healing in rabbits on corticosteroid therapy. Bone 26: 437 – 442.
dc.identifier.citedreferenceWalsh CA, Birch MA, Fraser WD, et al. 1995. Expression and secretion of parathyroid hormone‐related protein by human bone‐derived cells in vitro: effects of glucocorticoids. J Bone Miner Res 10: 17 – 25.
dc.identifier.citedreferenceLiu A, Li Y, Wang Y, et al. 2015. Exogenous parathyroid hormone‐related peptide promotes fracture healing in lepr(−/−) mice. Calcif Tissue Int 97: 581 – 591.
dc.identifier.citedreferenceLozano D, de Castro LF, Dapia S, et al. 2009. Role of parathyroid hormone‐related protein in the decreased osteoblast function in diabetes‐related osteopenia. Endocrinology 150: 2027 – 2035.
dc.identifier.citedreferenceMonroe DG, McGee‐Lawrence ME, Oursler MJ, et al. 2012. Update on Wnt signaling in bone cell biology and bone disease. Gene 492: 1 – 18.
dc.identifier.citedreferenceAgholme F, Aspenberg P. 2011. Wnt signaling and orthopedics, an overview. Acta Orthop 82: 125 – 130.
dc.identifier.citedreferenceBaron R, Kneissel M. 2013. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19: 179 – 192.
dc.identifier.citedreferenceKe HZ, Richards WG, Li X, et al. 2012. Sclerostin and Dickkopf‐1 as therapeutic targets in bone diseases. Endocr Rev 33: 747 – 783.
dc.identifier.citedreferenceLi X, Grisanti M, Fan W, et al. 2011. Dickkopf‐1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 26: 2610 – 2621.
dc.identifier.citedreferenceOminsky MS, Li C, Li X, et al. 2011. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res 26: 1012 – 1021.
dc.identifier.citedreferenceSuen PK, He YX, Chow DH, et al. 2014. Sclerostin monoclonal antibody enhanced bone fracture healing in an open osteotomy model in rats. J Orthop Res 32: 997 – 1005.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.