Show simple item record

Enzyme level N and O isotope effects of assimilatory and dissimilatory nitrate reduction

dc.contributor.authorTreibergs, Lija A.
dc.contributor.authorGranger, Julie
dc.date.accessioned2017-02-02T22:01:48Z
dc.date.available2018-03-01T16:43:51Zen
dc.date.issued2017-01
dc.identifier.citationTreibergs, Lija A.; Granger, Julie (2017). "Enzyme level N and O isotope effects of assimilatory and dissimilatory nitrate reduction." Limnology and Oceanography 62(1): 272-288.
dc.identifier.issn0024-3590
dc.identifier.issn1939-5590
dc.identifier.urihttps://hdl.handle.net/2027.42/136031
dc.description.abstractTo provide mechanistic constraints to interpret nitrogen (N) and oxygen (O) isotope ratios of nitrate (NO3−), 15N/14N and 18O/16O, in the environment, we measured the enzymatic NO3− N and O isotope effects (15ε and 18ε) during its reduction by NO3− reductase enzymes, including (1) a prokaryotic respiratory NO3− reductase, Nar, from the heterotrophic denitrifier Paracoccus denitrificans, (2) eukaryotic assimilatory NO3− reductases, eukNR, from Pichia angusta and from Arabidopsis thaliana, and (3) a prokaryotic periplasmic NO3− reductase, Nap, from the photoheterotroph Rhodobacter sphaeroides. Enzymatic Nar and eukNR assays with artificial viologen electron donors yielded identical 18ε and 15ε of ∼28‰, regardless of [NO3−] or assay temperature, suggesting analogous kinetic mechanisms with viologen reductants. Nar assays fuelled with the physiological reductant hydroquinone (HQ) also yielded 18ε ≈ 15ε, but variable amplitudes from 21‰ to 33.0‰ in association with [NO3−], suggesting analogous substrate sensitivity in vivo. Nap assays fuelled by viologen revealed 18ε:15ε of 0.50, where 18ε ≈ 19‰ and 15ε ≈ 38‰, indicating a distinct catalytic mechanism than Nar and eukNR. Nap isotope effects measured in vivo showed a similar 18ε:15ε of 0.57, but reduced 18ε ≈ 11‰ and 15ε ≈ 19‰. Together, the results confirm identical enzymatic 18ε and 15ε during NO3− assimilation and denitrification, reinforcing the reliability of this benchmark to identify NO3− consumption in the environment. However, the amplitude of enzymatic isotope effects is apt to vary in vivo. The distinctive signature of Nap is of interest for deciphering catalytic mechanisms but may be negligible in most environments given its physiological role.
dc.publisherCRC Press
dc.publisherWiley Periodicals, Inc.
dc.titleEnzyme level N and O isotope effects of assimilatory and dissimilatory nitrate reduction
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136031/1/lno10393-sup-0001-suppinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136031/2/lno10393_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136031/3/lno10393.pdf
dc.identifier.doi10.1002/lno.10393
dc.identifier.sourceLimnology and Oceanography
dc.identifier.citedreferencePeltzer, E. T. 2007. MATLAB shell‐scripts for linear regression analysis, l. Least‐Squares‐Cubic, http://www.mbari.org/index-of-downloadable-files/.
dc.identifier.citedreferenceSigman, D. M., J. Granger, P. J. DiFiore, M. M. Lehmann, R. Ho, G. Cane, and A. van Geen. 2005. Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Glob. Biogeochem. Cycles 19:
dc.identifier.citedreferenceSkipper, L., W. H. Campbell, J. A. Mertens, and D. J. Lowe. 2001. Pre‐steady‐state kinetic analysis of recombinant Arabidopsis NADP: Nitrate reductase‐rate‐limiting processes in catalysis. J. Biol. Chem. 276: 26995 – 27002. − doi: 10.1074/jbc.M100356200
dc.identifier.citedreferenceSokal, R. R., and F. J. Rohlf. 1995. Biometry: The principles and practice of statistics in biological research, 3rd ed. Freeman, W. H., New York.
dc.identifier.citedreferenceSparacino‐Watkins, C., J. F. Stolz, and P. Basu. 2014. Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 43: 676 – 706. doi: 10.1039/C3CS60249D
dc.identifier.citedreferenceStolz, J. F., and P. Basu. 2002. Evolution of nitrate reductase: Molecular and structural variations on a common function. Chembiochem 3: 198 – 206. doi:10.1002/1439‐7633(20020301)3:2/3,198::AID‐CBIC198>3.0.CO;2‐C
dc.identifier.citedreferenceVoss, M., J. W. Dippner, and J. P. Montoya. 2001. Nitrogen isotope patterns in the oxygen‐deficient waters of the eastern tropical North Pacific Ocean. Deep‐Sea Res. I 48: 1905 – 1921. doi: 10.1016/S0967-0637(00)00110-2
dc.identifier.citedreferenceWada, E., and A. Hattori. 1978. Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds. Geomicrobiol. J. 1: 85 – 101. doi: 10.1080/01490457809377725
dc.identifier.citedreferenceWaser, N. A., K. D. Yin, Z. M. Yu, K. Tada, P. J. Harrison, D. H. Turpin, and S. E. Calvert. 1998. Nitrogen isotope fractionation during nitrate, ammonium and urea uptake by marine diatoms and coccolithophores under various conditions of N availability. Mar. Ecol. Prog. Ser. 169: 29 – 41. doi: 10.3354/meps169029
dc.identifier.citedreferenceWaser, N. A., Z. M. Yu, K. D. Yin, B. Nielsen, P. J. Harrison, D. H. Turpin, and S. E. Calvert. 1999. Nitrogen isotopic fractionation during a simulated diatom spring bloom: Importance of N‐starvation in controlling fractionation. Mar. Ecol. Prog. Ser. 179: 291 – 296. doi: 10.3354/meps179291
dc.identifier.citedreferenceWeaver, P. F., J. D. Wall, and H. Gest. 1975. Characterization of Rhodopseudomonas capsulata. Arch. Microbiol. 105: 207 – 216. doi: 10.1007/BF00447139
dc.identifier.citedreferenceWellman, R. P., F. D. Cook, and H. R. Krouse. 1968. Nitrogen‐15: Microbiological alteration of abundance. Science 161: 269 – 270. doi: 10.1126/science.161.3838.269
dc.identifier.citedreferenceWenk, C. B., J. Zopfi, J. Blees, M. Veronesi, H. Niemann, and M. F. Lehmann. 2014a. Community N and O isotope fractionation by sulfide‐dependent denitrification and anammox in a stratified lacustrine water column. Geochim. Cosmochim. Acta 125: 551 – 563. doi: 10.1016/j.gca.2013.10.034
dc.identifier.citedreferenceWenk, C. B., J. Zopfi, W. S. Gardner, M. J. McCarthy, H. Niemann, M. Veronesi, and M. F. Lehmann. 2014b. Partitioning between benthic and pelagic nitrate reduction in the Lake Lugano south basin. Limnol. Oceanogr. 59: 1421 – 1433. doi: 10.4319/lo.2014.59.4.1421
dc.identifier.citedreferenceWu, J. P., S. E. Calvert, and C. S. Wong. 1997. Nitrogen isotope variations in the subarctic northeast Pacific: Relationships to nitrate utilization and trophic structure. Deep‐Sea Res. I 44: 287 – 314. doi: 10.1016/S0967-0637(96)00099-4
dc.identifier.citedreferenceWunderlich, A., R. Meckenstock, and F. Einsiedl. 2012. Effect of different carbon substrates on nitrate stable isotope fractionation during microbial denitrification. Environ. Sci. Technol. 46: 4861 – 4868. doi: 10.1021/es204075b
dc.identifier.citedreferenceWunderlich, A., R. U. Meckenstock, and F. Einsiedl. 2013. A mixture of nitrite‐oxidizing and denitrifying microorganisms affects the δ18O of dissolved nitrate during anaerobic microbial denitrification depending on the δ18O of ambient water. Geochim. Cosmochim. Acta 119: 31 – 45. doi: 10.1016/j.gca.2013.05.028
dc.identifier.citedreferenceAltabet, M. A. 2001. Nitrogen isotopic evidence for micronutrient control of fractional NO 3 utilization in the equatorial Pacific. Limnol. Oceanogr.. 46: 368 – 380. doi: 10.4319/lo.2001.46.2.0368
dc.identifier.citedreferenceAmberger, A., and H. L. Schmidt. 1987. Natürliche isotopengehalte von nitrat als Indikatoren für dessen herkunft. Geochim. Cosmochim. Acta 51: 2699 – 2705. doi: 10.1016/0016-7037(87)90150-5
dc.identifier.citedreferenceAnderson, L. J., D. J. Richardson, and J. N. Butt. 2001. Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity. Biochemistry 40: 11294 – 11307. doi: 10.1021/bi002706b
dc.identifier.citedreferenceAravena, R., and W. D. Robertson. 1998. Use of multiple isotope tracers to evaluate denitrification in ground water: Study of nitrate from a large‐flux septic system plume. Ground Water 36: 975 – 982. doi: 10.1111/j.1745-6584.1998.tb02104.x
dc.identifier.citedreferenceBarbier, G. G., R. C. Joshi, E. R. Campbell, and W. H. Campbell. 2004. Purification and biochemical characterization of simplified eukaryotic nitrate reductase expressed in Pichia pastoris. Protein Expr. Purif. 37: 61 – 71. doi: 10.1016/j.pep.2004.05.021
dc.identifier.citedreferenceBarbier, G. G., and W. H. Campbell. 2005. Viscosity effects on eukaryotic nitrate reductase activity. J. Biol. Chem. 280: 26049 – 26054. − doi: 10.1074/jbc.M409694200
dc.identifier.citedreferenceBarford, C. C., J. P. Montoya, M. A. Altabet, and R. Mitchell. 1999. Steady‐state nitrogen isotope effects of N 2 and N 2 O production in Paracoccus denitrificans. Appl. Environ. Microbiol. 65: 989 – 994.
dc.identifier.citedreferenceBender, R. A., and B. Friedrich. 1990. Regulation of assimilatory nitrate reductase formation in Klebsiella aerogenes W70. J. Bacteriol. 172: 7256 – 7259.
dc.identifier.citedreferenceBerks, B. C., S. J. Ferguson, J. W. B. Moir, and D. J. Richardson. 1995. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta Bioenerget. 1232: 97 – 173. doi: 10.1016/0005-2728(95)00092-5
dc.identifier.citedreferenceBöhlke, J. K., S. J. Mroczkowski, and T. B. Coplen. 2003. Oxygen isotopes in nitrate: New reference materials for O‐18:O‐17:O‐16 measurements and observations on nitrate–water equilibration. Rapid Commun Mass Spectrom. 17: 1835 – 1846. doi: 10.1002/rcm.1123
dc.identifier.citedreferenceBöttcher, J., O. Strebel, S. Voerkelius, and H. L. Schmidt. 1990. Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. 114: 413 – 424. doi: 10.1016/0022-1694(90)90068-9
dc.identifier.citedreferenceBourbonnais, A., M. A. Altabet, C. N. Charoenpong, J. Larkum, H. Hu, H. W. Bange, and L. Stramma. 2015. N‐loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment. Glob. Biogeochem. Cycles 29: 793 – 811. doi: 10.1002/2014GB005001
dc.identifier.citedreferenceBraman, R. S., and S. A. Hendrix. 1989. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(Iii) reduction with chemi‐luminescence detection. Analyt. Chem. 61: 2715 – 2718. doi: 10.1021/ac00199a007
dc.identifier.citedreferenceBrandes, J. A., A. H. Devol, T. Yoshinari, D. A. Jayakumar, and S. W. A. Naqvi. 1998. Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles. Limnol. Oceanogr. 43: 1680 – 1689. doi: 10.4319/lo.1998.43.7.1680
dc.identifier.citedreferenceBrandes, J. A., and A. H. Devol. 2002. A global marine‐fixed nitrogen isotopic budget: Implications for holocene nitrogen cycling. Glob. Biogeochem. Cycles 16:
dc.identifier.citedreferenceBryan, B. A., G. Shearer, J. L. Skeeters, and D. H. Kohl. 1983. Variable expression of the nitrogen isotope effect associated with denitrification of nitrite. J. Biol. Chem. 258: 8613 – 8617.
dc.identifier.citedreferenceBuchwald, C., A. E. Santoro, R. H. R. Stanley, and K. L. Casciotti. 2015. Nitrogen cycling in the secondary nitrite maximum of the eastern tropical North Pacific off Costa Rica. Glob. Biogeochem. Cycles 29: 2061 – 2081. doi: 10.1002/2015GB005187
dc.identifier.citedreferenceCampbell, W. H. 1999. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 277 – 303. doi: 10.1146/annurev.arplant.50.1.277
dc.identifier.citedreferenceCampbell, W. H. 2001. Structure and function of eukaryotic NAD(P)H: Nitrate reductase. Cell. Mol. Life Sci. 58: 194 – 204. doi: 10.1007/PL00000847
dc.identifier.citedreferenceCarlisle, E., C. Yarnes, M. D. Toney, and A. J. Bloom. 2014. Nitrate reductase 15N discrimination in Arabidopsis thaliana, Zea mays, Aspergillus niger, Pichea angusta, and Escherichia coli. Front. Plant Sci. 5: 317. doi: 10.3389/fpls.2014.00317
dc.identifier.citedreferenceCasciotti, K. L. 2016. Nitrogen and oxygen isotopic studies of the marine nitrogen cycle, p. 379 – 407. In C. A. Carlson and S. J. Giovannoni [eds.], Annual review of marine science. V. 8: 379 – 407. doi: 10.1146/annurev-marine-010213-135052
dc.identifier.citedreferenceCasciotti, K. L., D. M. Sigman, M. G. Hastings, J. K. Bohlke, and A. Hilkert. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analyt. Chem. 74: 4905 – 4912. doi: 10.1021/ac020113w
dc.identifier.citedreferenceCasciotti, K. L., and M. R. McIlvin. 2007. Isotopic analyses of nitrate and nitrite from reference mixtures and application to Eastern Tropical North Pacific waters. Mar. Chem. 107: 184 – 201. doi: 10.1016/j.marchem.2007.06.021
dc.identifier.citedreferenceCasciotti, K. L., C. Buchwald, and M. McIlvin. 2013. Implications of nitrate and nitrite isotopic measurements for the mechanisms of nitrogen cycling in the Peru oxygen deficient zone. Deep‐Sea Res. I 80: 78 – 93. doi: 10.1016/j.dsr.2013.05.017
dc.identifier.citedreferenceCoelho, C., and M. J. Romão. 2015. Structural and mechanistic insights on nitrate reductases. Protein Sci. 24: 1901 – 1911. doi: 10.1002/pro.2801
dc.identifier.citedreferenceCook, P. F. 1991. Kinetic and regulatory mechanisms of enzymes from isotope effects, p. 203 – 230. In P. F. Cook [ed.], Enzyme mechanism from isotope effects. CRC Press, Boca Raton, FL.
dc.identifier.citedreferenceDabundo, R. 2014. Nitrogen isotopes in the measurement of N 2 ‐fixation and the estimation for denitrification in the global ocean. University of Connecticut, Storrs, CT.
dc.identifier.citedreferenceDeutsch, C., D. M. Sigman, R. C. Thunell, A. N. Meckler, and G. H. Haug. 2004. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Glob. Biogeochem. Cycles 18. doi: 10.1029/2003GB002189
dc.identifier.citedreferenceDeVries, T., C. Deutsch, P. A. Rafter, and F. Primeau. 2013. Marine denitrification rates determined from a global 3‐D inverse model. Biogeosciences 10: 2481 – 2496. doi: 10.5194/bg-10-2481-2013
dc.identifier.citedreferenceDiFiore, P. J., D. M. Sigman, T. W. Trull, M. J. Lourey, K. L. Karsh, G. Cane, and R. Ho. 2006. Nitrogen isotope constraints on subantarctic biogeochemistry. J. Geophys. Res. Oceans 111: C08016. doi: 10.1029/2005JC003216
dc.identifier.citedreferenceKendall, C., E. M. Elliott, and S. D. Wankel. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems, p. 375 – 449. Wiley‐Blackwell, Malden, MA, USA.
dc.identifier.citedreferenceElliott, S. J., K. R. Hoke, K. Heffron, M. Palak, R. A. Rothery, J. H. Weiner, and F. A. Armstrong. 2004. Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: How nitrate reduction and inhibition depend on the oxidation state of the active site. Biochemistry 43: 799 – 807. doi: 10.1021/bi035869j
dc.identifier.citedreferenceEugster, O., and N. Gruber. 2012. A probabilistic estimate of global marine N‐fixation and denitrification. Glob. Biogeochem. Cycles 26: GB4013. doi: 10.1029/2012GB004300
dc.identifier.citedreferenceFrangioni, B., P. Arnoux, M. Sabaty, D. Pignol, P. Bertrand, B. Guigliarelli, and C. Leger. 2004. In Rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer. J. Am. Chem. Soc. 126: 1328 – 1329. doi: 10.1021/ja0384072
dc.identifier.citedreferenceFrey, C., S. Hietanen, K. Jürgens, M. Labrenz, and M. Voss. 2014. N and O isotope fractionation in nitrate during chemolithoautotrophic denitrification by Sulfurimonas gotlandica. Environ. Sci. Technol. 48: 13229 – 13237. doi: 10.1021/es503456g
dc.identifier.citedreferenceGaldiero, S., A. Falanga, M. Cantisani, R. Tarallo, M. E. Della Pepa, V. D’Oriano, and M. Galdiero. 2012. Microbe–host interactions: Structure and role of Gram‐negative bacterial porins. Curr. Protein Pept. Sci. 13: 843 – 854. v. pii: CPPS‐EPUB‐20121210‐11. doi: 10.2174/138920312804871120
dc.identifier.citedreferenceGarside, C. 1982. A chemiluminescent technique for the determination of nanomolar concentration of nitrate and nitrite in seawater. Mar. Chem. 11: 159 – 167. doi: 10.1016/0304-4203(82)90039-1
dc.identifier.citedreferenceGates, A. J., C. S. Butler, D. J. Richardson, and J. N. Butt. 2011. Electrocatalytic reduction of nitrate and selenate by NapAB. Biochem. Soc. Trans. 39: 236 – 242. doi: 10.1042/BST0390236
dc.identifier.citedreferenceGaye, B., B. Nagel, K. Dähnke, T. Rixen, and K. C. Emeis. 2013. Evidence of parallel denitrification and nitrite oxidation in the ODZ of the Arabian Sea from paired stable isotopes of nitrate and nitrite. Glob. Biogeochem. Cycles 27: 1059 – 1071. doi: 10.1002/2011GB004115
dc.identifier.citedreferenceGeorge, G. N., R. Bray, F. Morpeth, and D. Boxer. 1985. Complexes with halide and other anions of the molybdenum centre of nitrate reductase from Escherichia coli. Biochem. J. 227: 925 – 931. doi: 10.1042/bj2270925
dc.identifier.citedreferenceGonfiantini, R., W. Stichler, and K. Rosanski. 1995. Standards and intercomparison materials distributed by the IAEA for stable isotope measurements. International Atomic Energy Agency, Vienna.
dc.identifier.citedreferenceGranger, J., D. M. Sigman, J. A. Needoba, and P. J. Harrison. 2004. Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnol. Oceanogr. 49: 1763 – 1773. doi: 10.4319/lo.2004.49.5.1763
dc.identifier.citedreferenceGranger, J., D. M. Sigman, M. G. Prokopenko, M. F. Lehmann, and P. D. Tortell. 2006. A method for nitrite removal in nitrate N and O isotope analyses. Limnol. Oceanogr. Methods 4: 205 – 212. doi: 10.4319/lom.2006.4.205
dc.identifier.citedreferenceGranger, J., D. M. Sigman, M. F. Lehmann, and P. D. Tortell. 2008. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol. Oceanogr. 53: 2533 – 2545. doi: 10.4319/lo.2008.53.6.2533
dc.identifier.citedreferenceGranger, J., and D. M. Sigman. 2009. Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun. Mass Spectrom. 23: 3753 – 3762. doi: 10.1002/rcm.4307
dc.identifier.citedreferenceGranger, J., D. M. Sigman, M. M. Rohde, M. T. Maldonado, and P. D. Tortell. 2010. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim. Cosmochim. Acta 74: 1030 – 1040. doi: 10.1016/j.gca.2009.10.044
dc.identifier.citedreferenceGruber, N., and J. N. Galloway. 2008. An Earth‐system perspective of the global nitrogen cycle. Nature 451: 293 – 296. doi: 10.1038/nature06592
dc.identifier.citedreferenceGuillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates, p. 22 – 60. In W. L. Smith and M. H. Chanley [eds.], Culture of marine invertebrate animals. Plenum Press, New York.
dc.identifier.citedreferenceGuo, W., J. Granger, and D. M. Sigman. 2010. Nitrate isotope fractionations during biological nitrate reduction: Insights from first principles theoretical modeling. In AGU 2010 fall meeting. San Francisco, CA.
dc.identifier.citedreferenceJepson, B. J., and others. 2004. Tuning a nitrate reductase for function: The first spectropotentiometric characterization of a bacterial assimilatory nitrate reductase reveals novel redox properties. J Biol Chem. 279: 32212 – 32218. doi: 10.1074/jbc.M402669200
dc.identifier.citedreferenceJormakka, M., D. Richardson, B. Byrne, and S. Iwata. 2004. Architecture of NarGH reveals a structural classification of Mo‐bisMGD enzymes. Structure 12: 95 – 104. doi: 10.1016/j.str.2003.11.020
dc.identifier.citedreferenceKarsh, K. L., T. W. Trull, A. J. Lourey, and D. M. Sigman. 2003. Relationship of nitrogen isotope fractionation to phytoplankton size and iron availability during the Southern Ocean Iron RElease Experiment (SOIREE). Limnol. Oceanogr. 48: 1058 – 1068. doi: 10.4319/lo.2003.48.3.1058
dc.identifier.citedreferenceKarsh, K. L., J. Granger, K. Kritee, and D. M. Sigman. 2012. Eukaryotic assimilatory nitrate reductase fractionates N and O isotopes with a ratio near unity. Environ. Sci. Technol. 46: 5727 – 5735. doi: 10.1021/es204593q
dc.identifier.citedreferenceKarsh, K. L., Trull, T. W. D. M. Sigman, T P. A., and J. Granger. 2014. The contributions of nitrate uptake and efflux to isotope fractionation during algal nitrate assimilation. Geochim. Cosmochim. Acta. 132: 391 – 412. doi: 10.1016/j.gca.2013.09.030
dc.identifier.citedreferenceKern, M., and J. Simon. 2009. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria. Biochim. Biophys. Acta Bioenerget. 1787: 646 – 656. doi: 10.1016/j.bbabio.2008.12.010
dc.identifier.citedreferenceKnöller, K., C. Vogt, M. Haupt, S. Feisthauer, and H. H. Richnow. 2011. Experimental investigation of nitrogen and oxygen isotope fractionation in nitrate and nitrite during denitrification. Biogeochemistry 103: 371 – 384. doi: 10.1007/s10533-010-9483-9
dc.identifier.citedreferenceKorner, H., and W. G. Zumft. 1989. Expression of denitrification enzymes in response to the dissolved oxygen levels and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl. Environ. Microbiol. 55: 1670 – 1676.
dc.identifier.citedreferenceKritee, K., D. M. Sigman, J. Granger, B. B. Ward, A. Jayakumar, and C. Deutsch. 2012. Reduced isotope fractionation by denitrification under conditions relevant to the ocean. Geochim. Cosmochim. Acta. 92: 243 – 259. doi: 10.1016/j.gca.2012.05.020
dc.identifier.citedreferenceMariotti, A., J. C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux, and P. Tardieux. 1981. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant Soil 62: 413 – 430. doi: 10.1007/BF02374138
dc.identifier.citedreferenceMontoya, J. P., and J. J. McCarthy. 1995. Isotopic fractionation during nitrate uptake by marine phytoplankton grown in continuous culture. J. Plankton Res. 17: 439 – 464. doi: 10.1093/plankt/17.3.439
dc.identifier.citedreferenceMoreno‐Vivian, C., P. Cabello, M. Martinez‐Luque, R. Blasco, and F. Castillo. 1999. Prokaryotic nitrate reduction: Molecular properties and functional distinction among bacterial nitrate reductases. J. Bacteriol. 181: 6573 – 6584.
dc.identifier.citedreferenceNeedoba, J. A., N. A. Waser, P. J. Harrison, and S. E. Calvert. 2003. Nitrogen isotope fractionation in 12 species of marine phytoplankton during growth on nitrate. Mar. Ecol. Prog. Ser. 255: 81 – 91. doi: 10.3354/meps255081
dc.identifier.citedreferenceNeedoba, J. A., D. M. Sigman, and P. J. Harrison. 2004. The mechanism of isotope fractionation during algal nitrate assimilation as illuminated by the N‐15/N‐14 of intracellular nitrate. J. Phycol. 40: 517 – 522. doi: 10.1111/j.1529-8817.2004.03172.x
dc.identifier.citedreferenceO’Leary, M. H. 1980. Determination of heavy‐atom isotope effects on enzyme‐catalyzed reactions. Methods Enzymol. 64: 881 – 888.
dc.identifier.citedreferencePasciak, W. J., and J. Gavis. 1974. Transport limitation of nutrient uptake in phytoplankton. Limnol. Oceanogr. 19: 881 – 898. doi: 10.4319/lo.1974.19.6.0881
dc.identifier.citedreferenceSears, H. J., S. Spiro, and D. J. Richardson. 1997. Effect of carbon substrate and aeration on nitrate reduction and expression of the periplasmic and membrane‐bound nitrate reductases in carbon‐limited continuous cultures of Paracoccus denitrificans Pd1222. Microbiology 143: 3767 – 3774. doi: 10.1099/00221287-143-12-3767
dc.identifier.citedreferenceShearer, G., J. D. Schneider, and D. H. Kohl. 1991. Separating the efflux and influx components of net nitrate uptake by Synechococcus‐R2 under steady‐state conditions. J. General Microbiol. 137: 1179 – 1184.
dc.identifier.citedreferenceSigman, D. M., M. A. Altabet, R. Francois, D. C. McCorkle, and G. Fischer. 1999. The d 15 N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters. Glob. Biogeochem. Cycles 13: 1149 – 1166. doi: 10.1029/1999GB900038
dc.identifier.citedreferenceSigman, D. M., K. L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J. K. Bohlke. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analyt. Chem. 73: 4145 – 4153. doi: 10.1021/ac010088e
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.