Show simple item record

Auditory N1 reveals planning and monitoring processes during music performance

dc.contributor.authorMathias, Brian
dc.contributor.authorGehring, William J.
dc.contributor.authorPalmer, Caroline
dc.date.accessioned2017-02-02T22:01:54Z
dc.date.available2018-04-02T18:03:23Zen
dc.date.issued2017-02
dc.identifier.citationMathias, Brian; Gehring, William J.; Palmer, Caroline (2017). "Auditory N1 reveals planning and monitoring processes during music performance." Psychophysiology 54(2): 235-247.
dc.identifier.issn0048-5772
dc.identifier.issn1469-8986
dc.identifier.urihttps://hdl.handle.net/2027.42/136038
dc.description.abstractThe current study investigated the relationship between planning processes and feedback monitoring during music performance, a complex task in which performers prepare upcoming events while monitoring their sensory outcomes. Theories of action planning in auditory‐motor production tasks propose that the planning of future events co‐occurs with the perception of auditory feedback. This study investigated the neural correlates of planning and feedback monitoring by manipulating the contents of auditory feedback during music performance. Pianists memorized and performed melodies at a cued tempo in a synchronization‐continuation task while the EEG was recorded. During performance, auditory feedback associated with single melody tones was occasionally substituted with tones corresponding to future (next), present (current), or past (previous) melody tones. Only future‐oriented altered feedback disrupted behavior: Future‐oriented feedback caused pianists to slow down on the subsequent tone more than past‐oriented feedback, and amplitudes of the auditory N1 potential elicited by the tone immediately following the altered feedback were larger for future‐oriented than for past‐oriented or noncontextual (unrelated) altered feedback; larger N1 amplitudes were associated with greater slowing following altered feedback in the future condition only. Feedback‐related negativities were elicited in all altered feedback conditions. In sum, behavioral and neural evidence suggests that future‐oriented feedback disrupts performance more than past‐oriented feedback, consistent with planning theories that posit similarity‐based interference between feedback and planning contents. Neural sensory processing of auditory feedback, reflected in the N1 ERP, may serve as a marker for temporal disruption caused by altered auditory feedback in auditory‐motor production tasks.
dc.publisherMax Planck Institute of Cognitive Neuroscience
dc.publisherWiley Periodicals, Inc.
dc.subject.otherFRN
dc.subject.otherSensorimotor memory
dc.subject.otherMusic cognition
dc.subject.otherFeedback monitoring
dc.subject.otherSequence planning
dc.subject.otherN1
dc.titleAuditory N1 reveals planning and monitoring processes during music performance
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychology
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136038/1/psyp12781_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136038/2/psyp12781.pdf
dc.identifier.doi10.1111/psyp.12781
dc.identifier.sourcePsychophysiology
dc.identifier.citedreferenceNäätänen, R., & Winkler, I. ( 1999 ). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125 ( 6 ), 826 – 859. doi: 10.1037/0033-2909.125.6.826
dc.identifier.citedreferenceMaidhof, C., Vavatzanidis, N., Prinz, W., Rieger, M., & Koelsch, S. ( 2010 ). Processing expectancy violations during music performance and perception: An ERP study. Journal of Cognitive Neuroscience, 22 ( 10 ), 2401 – 2413. doi: 10.1162/jocn.2009.21332
dc.identifier.citedreferenceMathias, B., Palmer, C., Perrin, F., & Tillmann, B. ( 2015 ). Sensorimotor learning enhances expectations during auditory perception. Cerebral Cortex, 25 ( 8 ), 2238 – 2254. doi: 10.1093/cercor/bhu030
dc.identifier.citedreferenceMathias, B., Tillmann, B., & Palmer, C. ( 2016 ). Sensory, cognitive, and sensorimotor learning Effects in recognition memory for music. Journal of Cognitive Neuroscience, 28 ( 8 ), 1111 – 1126. doi: 10.1162/jocn_a_00958
dc.identifier.citedreferenceMiltner, W. H., Braun, C. H., & Coles, M. G. ( 1997 ). Event‐related brain potentials following incorrect feedback in a time‐estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9 ( 6 ), 788 – 798. doi: 10.1162/jocn.1997.9.6.788
dc.identifier.citedreferenceNeill, W. T. ( 1977 ). Inhibitory and facilitatory processes in selective attention. Journal of Experimental Psychology: Human Perception and Performance, 3 ( 3 ), 444 – 450. doi: 10.1037/0096-1523.3.3.444
dc.identifier.citedreferenceNieuwenhuis, S., Aston‐Jones, G., & Cohen, J. D. ( 2005 ). Decision making, the P3, and the locus coeruleus–norepinephrine system. Psychological Bulletin, 131 ( 4 ), 510 – 532. doi: 10.1037/0033-2909.131.4.510
dc.identifier.citedreferenceNieuwenhuis, S., Holroyd, C. B., Mol, N., & Coles, M. G. ( 2004 ). Reinforcement‐related brain potentials from medial frontal cortex: Origins and functional significance. Neuroscience & Biobehavioral Reviews, 28 ( 4 ), 441 – 448. doi: 10.1016/j.neubiorev.2004.05.003
dc.identifier.citedreferenceNotebaert, W., Houtman, F., Van Opstal, F., Gevers, W., Fias, W., & Verguts, T. ( 2009 ). Post‐error slowing: An orienting account. Cognition, 111 ( 2 ), 275 – 279. doi: 10.1016/j.cognition.2009.02.002
dc.identifier.citedreferenceOliveira, F. T. P., McDonald, J. J., & Goodman, D. ( 2007 ). Performance monitoring in the anterior cingulate is not all error related: Expectancy deviation and the representation of action‐outcome associations. Journal of Cognitive Neuroscience, 19, 1994 – 2004. doi: 10.1162/jocn.2007.19.12.1994
dc.identifier.citedreferencePalmer, C., Mathias, B., & Anderson, M. ( 2012 ). Sensorimotor mechanisms in music performance: Actions that go partially wrong. Annals of the New York Academy of Sciences, 1252 ( 1 ), 185 – 191. doi: 10.1111/j.1749-6632.2011.06427.x
dc.identifier.citedreferencePalmer, C., & Pfordresher, P. Q. ( 2003 ). Incremental planning in sequence production. Psychological Review, 110, 683 – 712. doi: 10.1037/0033-295X.110.4.683
dc.identifier.citedreferencePalmer, C, & van de Sande, C. ( 1993 ). Units of knowledge in music performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19 ( 2 ), 457 – 470. doi: 10.1037/0278-7393.19.2.457
dc.identifier.citedreferencePalmer, C, & van de Sande, C. ( 1995 ). Range of planning in music performance. Journal of Experimental Psychology: Human Perception and Performance, 21 ( 5 ), 947 – 962. doi: 10.1037/0096-1523.21.5.947
dc.identifier.citedreferencePfordresher, P. Q. ( 2003 ). Auditory feedback in music performance: Evidence for a dissociation of sequencing and timing. Journal of Experimental Psychology: Human Perception & Performance, 29, 949 – 964. doi: 10.1037/0096-1523.29.5.949
dc.identifier.citedreferencePfordresher, P. Q., & Palmer, C. ( 2002 ). Effects of delayed auditory feedback on timing of music performance. Psychological Research, 66 ( 1 ), 71 – 79. doi: 10.1007/s004260100075
dc.identifier.citedreferencePfordresher, P. Q., & Palmer, C. ( 2006 ). Effects of hearing the past, present, or future during music performance. Perception & Psychophysics, 68 ( 3 ), 362 – 376. doi: 10.3758/BF03193683
dc.identifier.citedreferencePfordresher, P. Q., Palmer, C., & Jungers, M. K. ( 2007 ). Speed, accuracy, and serial order in sequence production. Cognitive Science, 31 ( 1 ), 63 – 98. doi: 10.1080/03640210709336985
dc.identifier.citedreferencePolich, J. ( 2007 ). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128 – 2148. doi: 10.1016/j.clinph.2007.04.019
dc.identifier.citedreferenceRabbitt, P. M. A. ( 1966 ). Errors and error correction in choice‐response tasks. Journal of Experimental Psychology, 71, 264 – 272. doi: 10.1037/h0022853
dc.identifier.citedreferenceRepp, B. H. ( 1999 ). Effects of auditory feedback deprivation on expressive piano performance. Music Perception, 16, 409 – 438. doi: 10.2307/40285802
dc.identifier.citedreferenceSchuermann, B., Endrass, T., & Kathmann, N. ( 2012 ). Neural correlates of feedback processing in decision‐making under risk. Frontiers in Human Neuroscience, 6, 204. doi: 10.3389/fnhum.2012.00204
dc.identifier.citedreferenceSnyder, J. S., Alain, C., & Picton, T. W. ( 2006 ). Effects of attention on neuroelectric correlates of auditory stream segregation. Journal of Cognitive Neuroscience, 18 ( 1 ), 1 – 13. doi: 10.1162/089892906775250021
dc.identifier.citedreferenceTimm, J., SanMiguel, I., Saupe, K., & Schröger, E. ( 2013 ). The N1‐suppression effect for self‐initiated sounds is independent of attention. BMC Neuroscience, 14, 1 – 11. doi: 10.1186/1471-2202-14-2
dc.identifier.citedreferenceAliu, S. O., Houde, J. F., & Nagarajan, S. S. ( 2009 ). Motor‐induced suppression of the auditory cortex. Journal of Cognitive Neuroscience, 21 ( 4 ), 791 – 802. doi: 10.1162/jocn.2009.21055
dc.identifier.citedreferenceBaess, P., Horváth, J., Jacobsen, T., & Schröger, E. ( 2011 ). Selective suppression of self‐initiated sounds in an auditory stream: An ERP study. Psychophysiology, 48 ( 9 ), 1276 – 1283. doi: 10.1111/j.1469-8986.2011.01196.x
dc.identifier.citedreferenceBangert, M., Jürgens, U., Häusler, U., & Altenmüller, E. ( 2006 ). Classical conditioned responses to absent tones. BMC Neuroscience, 7 ( 1), 60. doi: 10.1186/1471-2202-7-60
dc.identifier.citedreferenceBehroozmand, R., & Larson, C. R. ( 2011 ). Error‐dependent modulation of speech‐induced auditory suppression for pitch‐shifted voice feedback. BMC Neuroscience, 12 ( 1 ), 54. doi: 10.1186/1471-2202-12-54
dc.identifier.citedreferenceBellebaum, C., Polezzi, D., & Daum, I. ( 2010 ). It is less than you expected: The feedback‐related negativity reflects violations of reward magnitude expectations. Neuropsychologia, 48 ( 11 ), 3343 – 3350. doi: 10.1016/j.neuropsychologia.2010.07.023
dc.identifier.citedreferenceBendixen, A., SanMiguel, I., & Schröger, E. ( 2012 ). Early electrophysiological indicators for predictive processing in audition: A review. International Journal of Psychophysiology, 83 ( 2 ), 120 – 131. doi: 10.1016/j.ijpsycho.2011.08.003
dc.identifier.citedreferenceBernat, E. M., Nelson, L. D., & Baskin‐Sommers, A. R. ( 2015 ). Time‐frequency theta and delta measures index separable components of feedback processing in a gambling task. Psychophysiology, 52 ( 5 ), 626 – 637. doi: 10.1111/psyp.12390
dc.identifier.citedreferenceBertrand, O., Bohorquez, J., & Pernier, J. ( 1994 ). Time‐frequency digital filtering based on an invertible wavelet transform: An application to evoked potentials. IEEE Transactions on Biomedical Engineering, 41 ( 1 ), 77 – 88. doi: 10.1109/10.277274
dc.identifier.citedreferenceBrown, J. ( 1958 ). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10 ( 1 ), 12 – 21. doi: 10.1080/17470215808416249
dc.identifier.citedreferenceCarter, C. S., & Van Veen, V. ( 2007 ). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7 ( 4 ), 367 – 379. doi: 10.3758/CABN.7.4.367
dc.identifier.citedreferenceCavanagh, J. F., & Frank, M. J. ( 2014 ). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18 ( 8 ), 414 – 421. doi: 10.1016/j.tics.2014.04.012
dc.identifier.citedreferenceCavanagh, J. F., Zambrano‐Vazquez, L., & Allen, J. J. ( 2012 ). Theta lingua franca: A common mid‐frontal substrate for action monitoring processes. Psychophysiology, 49 ( 2 ), 220 – 238. doi: 10.1111/j.1469-8986.2011.01293.x
dc.identifier.citedreferenceChristoffels, I. K., van de Ven, V., Waldorp, L. J., Formisano, E., & Schiller, N. O. ( 2011 ). The sensory consequences of speaking: Parametric neural cancellation during speech in auditory cortex. PLOS ONE, 6 ( 5 ), e18307. doi: 10.1371/journal.pone.0018307
dc.identifier.citedreferenceConde, V., Altenmüller, E., Villringer, A., & Ragert, P. ( 2012 ). Task‐irrelevant auditory feedback facilitates motor performance in musicians. Frontiers in Psychology, 3, 146. doi: 10.3389/fpsyg.2012.00146
dc.identifier.citedreferenceCouchman, J. J., Beasley, R., & Pfordresher, P. Q. ( 2012 ). The experience of agency in sequence production with altered auditory feedback. Conciousness and Cognition, 21, 186 – 203. doi: 10.1016/j.concog.2011.10.007
dc.identifier.citedreferenceDebener, S., Ullsperger, M., Siegel, M., Fiehler, K., Von Cramon, D. Y., & Engel, A. K. ( 2005 ). Trial‐by‐trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25 ( 50 ), 11730 – 11737. doi: 10.1523/JNEUROSCI.3286-05.2005
dc.identifier.citedreferenceDell, G. S. ( 1986 ). A spreading‐activation theory of retrieval in sentence production. Psychological Review, 93 ( 3 ), 283 – 321. doi: 10.1037/0033-295X.93.3.283
dc.identifier.citedreferenceDell, G. S., Burger, L. K., & Svec, W. R. ( 1997 ). Language production and serial order: A functional analysis and a model. Psychological Review, 104, 123 – 147. doi: 10.1037/0033-295X.104.1.123
dc.identifier.citedreferenceDonchin, E., & Coles, M. G. ( 1988 ). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11 ( 03 ), 357 – 374. doi: 10.1017/S0140525X00058027
dc.identifier.citedreferenceDonkers, F. C., Nieuwenhuis, S., & van Boxtel, G. J. ( 2005 ). Mediofrontal negativities in the absence of responding. Cognitive Brain Research, 25 ( 3 ), 777 – 787. doi: 10.1016/j.cogbrainres.2005.09.007
dc.identifier.citedreferenceDrake, C., & Palmer, C. ( 2000 ). Skill acquisition in music performance: Relations between planning and temporal control. Cognition, 74, 1 – 32. doi: 10.1016/S0010-0277(99)00061-X
dc.identifier.citedreferenceEscera, C., Corral, M. J., & Yago, E. ( 2002 ). An electrophysiological and behavioral investigation of involuntary attention towards auditory frequency, duration and intensity changes. Cognitive Brain Research, 14 ( 3 ), 325 – 332. doi: 10.1016/S0926-6410(02)00135-0
dc.identifier.citedreferenceFerdinand, N. K., Mecklinger, A., Kray, J., & Gehring, W. J. ( 2012 ). The processing of unexpected positive response outcomes in the mediofrontal cortex. Journal of Neuroscience, 32 ( 35 ), 12087 – 12092. doi: 10.1523/JNEUROSCI.1410-12.2012
dc.identifier.citedreferenceFerdinand, N. K., & Opitz, B. ( 2014 ). Different aspects of performance feedback engage different brain areas: Disentangling valence and expectancy in feedback processing. Scientific Reports, 4. doi: 10.1038/srep05986
dc.identifier.citedreferenceFinney, S. A. ( 1997 ). Auditory feedback and musical keyboard performance. Music Perception, 15, 153 – 174. doi: 10.2307/40285747
dc.identifier.citedreferenceFinney, S. A. ( 2001 ). FTAP: A Linux‐based program for tapping and music experiments. Behavior Research Methods, Instruments, & Computers, 33 ( 1 ), 65 – 72. doi: 10.3758/BF03195348
dc.identifier.citedreferenceFinney, S., & Palmer, C. ( 2003 ). Auditory feedback and memory for music performance: Sound evidence for an encoding effect. Memory & Cognition, 31 ( 1 ), 51 – 64. doi: 10.3758/BF03196082
dc.identifier.citedreferenceFromkin, V. A. ( 1971 ). The non‐anomalous nature of anomalous utterances. Language, 47, 27 – 52. doi: 10.2307/412187
dc.identifier.citedreferenceGarrett, M. F. ( 1976 ). Syntactic processes in sentence production. New Approaches to Language Mechanisms, 30, 231 – 256.
dc.identifier.citedreferenceGehring, W. J., Coles, M. G. H., Donchin, E., Goss, B., & Meyer, D. E. ( 1993 ). A neural system for error detection and compensation. Psychological Science, 4, 385 – 390. doi: 10.1126/science.1066893
dc.identifier.citedreferenceGehring, W. J., & Willoughby, A. R. ( 2002 ). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295, 2279 – 2282. doi: 10.1111/j.1467-9280.1993.tb00586.x
dc.identifier.citedreferenceGehring, W. J. & Willoughby, A. R. ( 2004 ). Are all medial frontal negativities created equal? Toward a richer empirical basis for theories of action monitoring. In M. Ullsperger & M. Falkenstein (Eds.), Errors, conflicts, and the brain. Current opinions on performance monitoring (pp. 14 – 20 ). Leipzig, Germany: Max Planck Institute of Cognitive Neuroscience.
dc.identifier.citedreferenceGoyer, J. P., Woldorff, M. G., & Huettel, S. A. ( 2008 ). Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards. Journal of Cognitive Neuroscience, 20 ( 11 ), 2058 – 2069. doi: 10.1162/jocn.2008.20134
dc.identifier.citedreferenceGrau, C., Fuentemilla, L., & Marco‐Pallares, J. ( 2007 ). Functional neural dynamics underlying auditory event‐related N1 and N1 suppression response. NeuroImage, 36 ( 3 ), 522 – 531. doi: 10.1037/0033-295X.105.4.611-633
dc.identifier.citedreferenceGuenther, F. H., Hampson, M., & Johnson, D. ( 1998 ). A theoretical investigation of reference frames for the planning of speech movements. Psychological Review, 105 ( 4 ), 611 – 633. doi: 10.1037/0033-295X.105.4.611-633
dc.identifier.citedreferenceHajcak, G., McDonald, N., & Simons, R. F. ( 2003 ). To err is autonomic: Error‐related brain potentials, ANS activity, and post‐error compensatory behavior. Psychophysiology, 40 ( 6 ), 895 – 903. doi: 10.1111/1469-8986.00107
dc.identifier.citedreferenceHajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. ( 2005 ). On the ERN and the significance of errors. Psychophysiology, 42 ( 2 ), 151 – 160. doi: 10.1111/j.1469-8986.2005.00270.x
dc.identifier.citedreferenceHolroyd, C. B., & Coles, M. G. ( 2002 ). The neural basis of human error processing: Reinforcement learning, dopamine, and the error‐related negativity. Psychological Review, 109 ( 4 ), 679 – 709. doi: 10.1037/0033-295X.109.4.679
dc.identifier.citedreferenceHommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. ( 2001 ). Codes and their vicissitudes. Behavioral and Brain Sciences, 24 ( 5 ), 910 – 926. doi: 10.1017/S0140525X01520105
dc.identifier.citedreferenceHorváth, J. ( 2015 ). Action‐related auditory ERP attenuation: Paradigms and hypotheses. Brain Research, 1626, 54 – 65. doi: 10.1016/j.brainres.2015.03.038
dc.identifier.citedreferenceHoude, J. F., & Jordan, M. I. ( 1998 ). Sensorimotor adaptation in speech production. Science, 279 ( 5354 ), 1213 – 1216. doi: 10.1126/science.279.5354.1213
dc.identifier.citedreferenceHowell, P. ( 2004 ). Assessment of some contemporary theories of stuttering that apply to spontaneous speech. Contemporary Issues in Communication Science and Disorders, 31, 122 – 139.
dc.identifier.citedreferenceJia, S., Li, H., Luo, Y., Chen, A., Wang, B., & Zhou, X. ( 2007 ). Detecting perceptual conflict by the feedback‐related negativity in brain potentials. NeuroReport, 18 ( 13 ), 1385 – 1388. doi: 10.1097/WNR.0b013e3282c48a90
dc.identifier.citedreferenceKatahira, K., Abla, D., Masuda, S., & Okanoya, K. ( 2008 ). Feedback‐based error monitoring processes during musical performance: An ERP study. Neuroscience Research, 61 ( 1 ), 120 – 128. doi: 10.1016/j.neures.2008.02.001
dc.identifier.citedreferenceKeppel, G., & Underwood, B. J. ( 1962 ). Proactive inhibition in short‐term retention of single items. Journal of Verbal Learning and Verbal Behavior, 1 ( 3 ), 153 – 161. doi: 10.1016/S0022-5371(62)80023-1
dc.identifier.citedreferenceLarge, E. W. ( 1993 ). Dynamic programming for the analysis of serial behaviors. Behavior Research Methods, Instruments, & Computers, 25 ( 2 ), 238 – 241. doi: 10.3758/BF03204504
dc.identifier.citedreferenceLerdahl, F., & Jackendoff, R. ( 1983 ). An overview of hierarchical structure in music. Music Perception: An Interdisciplinary Journal, 1 ( 2 ), 229 – 252. doi: 10.2307/40285257
dc.identifier.citedreferenceLevelt, W. J. ( 1983 ). Monitoring and self‐repair in speech. Cognition, 14 ( 1 ), 41 – 104. doi: 10.1016/0010-0277(83)90026-4
dc.identifier.citedreferenceLevelt, W. J., Roelofs, A., & Meyer, A. S. ( 1999 ). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22 ( 01 ), 1 – 38. doi: 10.1017/S0140525X99001776
dc.identifier.citedreferenceLiu, Y., & Gehring, W. J. ( 2009 ). Loss feedback negativity elicited by single‐ versus conjoined‐feature stimuli. NeuroReport, 20 ( 6 ), 632 – 636. doi: 10.1097/WNR.0b013e32832a3250
dc.identifier.citedreferenceLiu, Y., Nelson, L. D., Bernat, E. M., & Gehring, W. J. ( 2014 ). Perceptual properties of feedback stimuli influence the feedback‐related negativity in the flanker gambling task. Psychophysiology, 51 ( 8 ), 782 – 788. doi: 10.1111/psyp.12216
dc.identifier.citedreferenceLoehr, J. D., Kourtis, D., Vesper, C., Sebanz, N., & Knoblich, G. ( 2013 ). Monitoring individual and joint action outcomes in duet music performance. Journal of Cognitive Neuroscience, 25 ( 7 ), 1049 – 1061. doi: 10.1162/jocn_a_00388
dc.identifier.citedreferenceLutz, K., Puorger, R., Cheetham, M., & Jancke, L. ( 2013 ). Development of ERN together with an internal model of audio‐motor associations. Frontiers in Human Neuroscience, 7, 471. doi: 10.3389/fnhum.2013.00471
dc.identifier.citedreferenceMackay, I. R. A. ( 1987 ). Phonetics: The science of speech production. Boston, MA: Little, Brown and Company.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.