Show simple item record

Macromolecular Design Strategies for Preventing Active‐Material Crossover in Non‐Aqueous All‐Organic Redox‐Flow Batteries

dc.contributor.authorDoris, Sean E.
dc.contributor.authorWard, Ashleigh L.
dc.contributor.authorBaskin, Artem
dc.contributor.authorFrischmann, Peter D.
dc.contributor.authorGavvalapalli, Nagarjuna
dc.contributor.authorChénard, Etienne
dc.contributor.authorSevov, Christo S.
dc.contributor.authorPrendergast, David
dc.contributor.authorMoore, Jeffrey S.
dc.contributor.authorHelms, Brett A.
dc.date.accessioned2017-02-02T22:02:02Z
dc.date.available2018-04-02T18:03:23Zen
dc.date.issued2017-02-01
dc.identifier.citationDoris, Sean E.; Ward, Ashleigh L.; Baskin, Artem; Frischmann, Peter D.; Gavvalapalli, Nagarjuna; Chénard, Etienne ; Sevov, Christo S.; Prendergast, David; Moore, Jeffrey S.; Helms, Brett A. (2017). "Macromolecular Design Strategies for Preventing Active‐Material Crossover in Non‐Aqueous All‐Organic Redox‐Flow Batteries." Angewandte Chemie International Edition 56(6): 1595-1599.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/136045
dc.description.abstractIntermittent energy sources, including solar and wind, require scalable, low‐cost, multi‐hour energy storage solutions in order to be effectively incorporated into the grid. All‐Organic non‐aqueous redox‐flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox‐active species across the battery’s membrane. Here we show that active‐species crossover is arrested by scaling the membrane’s pore size to molecular dimensions and in turn increasing the size of the active material above the membrane’s pore‐size exclusion limit. When oligomeric redox‐active organics (RAOs) were paired with microporous polymer membranes, the rate of active‐material crossover was reduced more than 9000‐fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm−2 day−1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low‐potential RAOs in a variety of non‐aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next‐generation redox‐flow batteries.Better sieving through chemistry: Macromolecular chemistry provides a general approach for blocking redox‐active organic molecules from crossing through battery membranes at minimal cost to ionic conductivity. This advance solves a critical challenge facing next‐generation redox‐flow batteries, clearing the way toward efficient, low‐cost grid‐scale energy storage.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherredox-flow batteries
dc.subject.othermacromolecular chemistry
dc.subject.otherenergy storage
dc.subject.otherpolymers
dc.subject.othermembranes
dc.titleMacromolecular Design Strategies for Preventing Active‐Material Crossover in Non‐Aqueous All‐Organic Redox‐Flow Batteries
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136045/1/anie201610582-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136045/2/anie201610582_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136045/3/anie201610582.pdf
dc.identifier.doi10.1002/anie.201610582
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceW. Duan, R. S. Vemuri, J. D. Milshtein, S. Laramie, R. D. Dmello, J. Huang, L. Zhang, D. Hu, M. Vijayakumar, W. Wang, J. Liu, R. M. Darling, L. Thompson, K. Smith, J. S. Moore, F. R. Brushett, X. Wei, J. Mater. Chem. A 2016, 4, 5448.
dc.identifier.citedreferenceR. M. Darling, K. G. Gallagher, J. A. Kowalski, S. Ha, F. R. Brushett, Energy Environ. Sci. 2014, 7, 3459.
dc.identifier.citedreferenceF. R. Brushett, J. T. Vaughey, A. N. Jansen, Adv. Energy Mater. 2012, 2, 1390.
dc.identifier.citedreferenceC. S. Sevov, R. E. M. Brooner, E. Chénard, R. S. Assary, J. S. Moore, J. Rodríguez-López, M. S. Sanford, J. Am. Chem. Soc. 2015, 137, 14465.
dc.identifier.citedreferenceB. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.
dc.identifier.citedreferenceW. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Adv. Funct. Mater. 2013, 23, 970.
dc.identifier.citedreferenceJ. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, Angew. Chem. Int. Ed. 2015, 54, 9776; Angew. Chem. 2015, 127, 9912.
dc.identifier.citedreferenceP. Arora, Z. Zhang, Chem. Rev. 2004, 104, 4419.
dc.identifier.citedreferenceS.-H. Shin, S.-H. Yun, S.-H. Moon, RSC Adv. 2013, 3, 9095.
dc.identifier.citedreferenceR. M. Darling, K. G. Gallagher, W. Xie, L. Su, F. R. Brushett, J. Electrochem. Soc. 2016, 163, A 5029.
dc.identifier.citedreferenceC. Li, A. L. Ward, S. E. Doris, T. A. Pascal, D. Prendergast, B. A. Helms, Nano Lett. 2015, 15, 5724.
dc.identifier.citedreferenceS. E. Doris, A. L. Ward, P. D. Frischmann, L. Li, B. A. Helms, J. Mater. Chem. A 2016, 4, 16946.
dc.identifier.citedreferenceN. B. McKeown, P. M. Budd, Chem. Soc. Rev. 2006, 35, 675.
dc.identifier.citedreferenceP. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, Chem. Commun. 2004, 230.
dc.identifier.citedreferenceN. B. McKeown, P. M. Budd, Macromolecules 2010, 43, 5163.
dc.identifier.citedreferenceP. Marchetti, M. F. J. Solomon, G. Szekely, A. G. Livingston, Chem. Rev. 2014, 114, 10735.
dc.identifier.citedreferenceP. Knauth, Solid State Ionics 2009, 180, 911.
dc.identifier.citedreferenceX. Wei, W. Xu, J. Huang, L. Zhang, E. Walter, C. Lawrence, M. Vijayakumar, W. A. Henderson, T. Liu, L. Cosimbescu, B. Li, V. Sprenkle, W. Wang, Angew. Chem. Int. Ed. 2015, 54, 8684; Angew. Chem. 2015, 127, 8808.
dc.identifier.citedreferenceG. Nagarjuna, J. Hui, K. J. Cheng, T. Lichtenstein, M. Shen, J. S. Moore, J. Rodríguez-López, J. Am. Chem. Soc. 2014, 136, 16309.
dc.identifier.citedreferenceM. Burgess, J. S. Moore, J. Rodríguez-López, Acc. Chem. Res. 2016, 49, 2649.
dc.identifier.citedreferenceE. C. Montoto, G. Nagarjuna, J. Hui, M. Burgess, N. M. Sekerak, K. Hernández-Burgos, T.-S. Wei, M. Kneer, J. Grolman, K. J. Cheng, J. A. Lewis, J. S. Moore, J. Rodríguez-López, J. Am. Chem. Soc. 2016, 138, 13230.
dc.identifier.citedreferenceT. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M. D. Hager, U. S. Schubert, Nature 2015, 527, 78.
dc.identifier.citedreferenceJ. Winsberg, T. Hagemann, S. Muench, C. Friebe, B. Häupler, T. Janoschka, S. Morgenstern, M. D. Hager, U. S. Schubert, Chem. Mater. 2016, 28, 3401.
dc.identifier.citedreferenceM. Burgess, E. Chénard, K. Hernandez-Burgos, G. Nagarjuna, R. S. Assary, J. Hui, J. S. Moore, J. Rodríguez-López, Chem. Mater. 2016, 28, 7362.
dc.identifier.citedreferenceC. L. Staiger, S. J. Pas, A. J. Hill, C. J. Cornelius, Chem. Mater. 2008, 20, 2606.
dc.identifier.citedreferenceN. Du, M. M. Dal-Cin, I. Pinnau, A. Nicalek, G. P. Robertson, M. D. Guiver, Macromol. Rapid Commun. 2011, 32, 631.
dc.identifier.citedreferenceJ. Huang, L. Cheng, R. S. Assary, P. Wang, Z. Xue, A. K. Burrell, L. A. Curtiss, L. Zhang, Adv. Energy Mater. 2015, 5, 1401782.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.