Show simple item record

How will SOA change in the future?

dc.contributor.authorLin, Guangxing
dc.contributor.authorPenner, Joyce E.
dc.contributor.authorZhou, Cheng
dc.date.accessioned2017-02-02T22:02:05Z
dc.date.available2017-04-04T14:50:43Zen
dc.date.issued2016-02-28
dc.identifier.citationLin, Guangxing; Penner, Joyce E.; Zhou, Cheng (2016). "How will SOA change in the future?." Geophysical Research Letters 43(4): 1718-1726.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/136049
dc.description.abstractSecondary organic aerosol (SOA) plays a significant role in the Earth system by altering its radiative balance. Here we use an Earth system model coupled with an explicit SOA formation module to estimate the response of SOA concentrations to changes in climate, anthropogenic emissions, and human land use in the future. We find that climate change is the major driver for SOA change under the representative concentration pathways for the 8.5 future scenario. Climate change increases isoprene emission rate by 18% with the effect of temperature increases outweighing that of the CO2 inhibition effect. Annual mean global SOA mass is increased by 25% as a result of climate change. However, anthropogenic emissions and land use change decrease SOA. The net effect is that future global SOA burden in 2100 is nearly the same as that of the present day. The SOA concentrations over the Northern Hemisphere are predicted to decline in the future due to the control of sulfur emissions.Key PointsIsoprene increases even with CO2 inhibition effectClimate is the major driver for SOA increaseReduced anthropogenic emissions decreases SOA
dc.publisherCambridge Univ. Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiosphere and atmosphere interactions
dc.subject.otherbiogenic VOCs
dc.subject.otheraerosol
dc.subject.otherclimate change
dc.subject.otheratmospheric chemistry
dc.subject.otherSOA
dc.titleHow will SOA change in the future?
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136049/1/grl53994_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136049/2/grl53994-sup-0001-supplementary.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136049/3/grl53994.pdf
dc.identifier.doi10.1002/2015GL067137
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSharkey, T. D., and R. K. Monson ( 2014 ), The future of isoprene emission from leaves, canopies and landscapes, Plant Cell Environ., 37 ( 8 ), 1727 – 1740, doi: 10.1111/pce.12289.
dc.identifier.citedreferencePacifico, F., G. A. Folberth, C. D. Jones, S. P. Harrison, and W. J. Collins ( 2012 ), Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistry, J. Geophys. Res., 117, D22302, doi: 10.1029/2012JD018276.
dc.identifier.citedreferencePankow, J. F. ( 1994 ), An absorption model of gas/particle partitioning of organic compounds in the atmosphere, Atmos. Environ., 28 ( 2 ), 185 – 188, doi: 10.1016/1352-2310(94)90093-0.
dc.identifier.citedreferencePerket, J., M. G. Flanner, and J. E. Kay ( 2014 ), Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM, J. Geophys. Res. Atmos., 119, 1356 – 1362, doi: 10.1002/2013JD021139.
dc.identifier.citedreferencePiletic, I. R., E. O. Edney, and L. J. Bartolotti ( 2013 ), A computational study of acid catalyzed aerosol reactions of atmospherically relevant epoxides, Phys. Chem. Chem. Phys., 15 ( 41 ), 18,065 – 18,076.
dc.identifier.citedreferencePossell, M., and C. N. Hewitt ( 2011 ), Isoprene emissions from plants are mediated by atmospheric CO 2 concentrations, Global Change Biol., 17 ( 4 ), 1595 – 1610.
dc.identifier.citedreferencePye, H. O. T., et al. ( 2013 ), Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation, Environ. Sci. Technol., 47 ( 19 ), 11,056 – 11,064.
dc.identifier.citedreferenceRiedel, T. P., Y.‐H. Lin, S. H. Budisulistiorini, C. J. Gaston, J. A. Thornton, Z. Zhang, W. Vizuete, A. Gold, and J. D. Surratt ( 2015 ), Heterogeneous reactions of isoprene‐derived epoxides: Reaction probabilities and molar secondary organic aerosol yield estimates, Environ. Sci. Technol. Lett., 2 ( 2 ), 38 – 42, doi: 10.1021/ez500406f.
dc.identifier.citedreferenceSeinfeld, J. H., and S. N. Pandis ( 1998 ), Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley, New York.
dc.identifier.citedreferenceSitch, S., et al. ( 2008 ), Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs), Global Change Biol., 14 ( 9 ), 2015 – 2039, doi: 10.1111/j.1365-2486.2008.01626.x.
dc.identifier.citedreferenceSun, Z., K. Huve, V. Vislap, and Ü. Niinemets ( 2013 ), Elevated [CO 2 ] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen, J. Exp. Bot., 64 ( 18 ), 5509 – 5523, doi: 10.1093/jxb/ert318.
dc.identifier.citedreferenceTai, A. P. K., L. J. Mickley, C. L. Heald, and S. Wu ( 2013 ), Effect of CO 2 inhibition on biogenic isoprene emission: Implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use, Geophys. Res. Lett., 40, 3479 – 3483, doi: 10.1002/grl.50650.
dc.identifier.citedreferenceTsigaridis, K., and M. Kanakidou ( 2007 ), Secondary organic aerosol importance in the future atmosphere, Atmos. Environ., 41 ( 22 ), 4682 – 4692, doi: 10.1016/j.atmosenv.2007.03.045.
dc.identifier.citedreferenceTsigaridis, K., et al. ( 2014 ), The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys., 14 ( 19 ), 10,845 – 10,895, doi: 10.5194/acp-14-10845-2014.
dc.identifier.citedreferenceUnger, N. ( 2013 ), Isoprene emission variability through the twentieth century, J. Geophys. Res. Atmos., 118, 13,606 – 13,613, doi: 10.1002/2013JD020978.
dc.identifier.citedreferenceVan Vuuren, D. P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, and J.‐F. Lamarque ( 2011 ), The representative concentration pathways: An overview, Clim. Change, 109, 5 – 31.
dc.identifier.citedreferenceWesely, M. L. ( 1989 ), Parameterization of surface resistances to gaseous dry deposition in regional‐scale numerical models, Atmos. Environ., 23, 1293 – 1304.
dc.identifier.citedreferenceWilkinson, M. J., R. K. Monson, N. Trahan, S. Lee, E. Brown, R. B. Jackson, H. W. Polley, P. A. Fay, and R. Fall ( 2009 ), Leaf isoprene emission rate as a function of atmospheric CO 2 concentration, Global Change Biol., 15 ( 5 ), 1189 – 1200, doi: 10.1111/j.1365-2486.2008.01803.x.
dc.identifier.citedreferenceXu, L., et al. ( 2015 ), Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the south‐eastern United States, Proc. Natl. Acad. Sci. U.S.A., 112, 37 – 42, doi: 10.1073/pnas.1417609112.
dc.identifier.citedreferenceYoung, P. J., A. Arneth, G. Schurgers, G. Zeng, and J. A. Pyle ( 2009 ), The CO 2 inhibition of terrestrial isoprene emission significantly affects future ozone projections, Atmos. Chem. Phys., 9 ( 8 ), 2793 – 2803, doi: 10.5194/acp-9-2793-2009.
dc.identifier.citedreferenceYu, M., G. Wang, D. Parr, and K. F. Ahmed ( 2014 ), Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs, Clim. Change, 127 ( 2 ), 257 – 271, doi: 10.1007/s10584-014-1249-2.
dc.identifier.citedreferenceZhang, X., R. C. McVay, D. D. Huang, N. F. Dalleska, B. Aumont, R. C. Flagan, and J. H. Seinfeld ( 2015 ), Formation and evolution of molecular products in α ‐pinene secondary organic aerosol, Proc. Natl. Acad. Sci. U.S.A., 112, 14,168 – 14,173, doi: 10.1073/pnas.1517742112.
dc.identifier.citedreferenceZhou, C., and J. E. Penner ( 2014 ), Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative?, J. Geophys. Res. Atmos., 119, 11,303 – 11,320, doi: 10.1002/2014JD021914.
dc.identifier.citedreferenceLane, T. E., N. M. Donahue, and S. N. Pandis ( 2008 ), Effect of NO x on secondary organic aerosol concentrations, Environ. Sci. Technol., 42 ( 16 ), 6022 – 6027.
dc.identifier.citedreferenceArneth, A., et al. ( 2007 ), Process‐based estimates of terrestrial ecosystem isoprene emissions: Incorporating the effects of a direct CO 2 ‐isoprene interaction, Atmos. Chem. Phys., 7, 31 – 53.
dc.identifier.citedreferenceCarlton, A. G., R. W. Pinder, P. V. Bhave, and G. A. Pouliot ( 2010 ), To what extent can biogenic SOA be controlled?, Environ. Sci. Technol., 44, 3376 – 3380, doi: 10.1021/es903506b.
dc.identifier.citedreferenceCarslaw, K. S., O. Boucher, D. V. Spracklen, G. W. Mann, J. G. L. Rae, S. Woodward, and M. Kulmala ( 2010 ), A review of natural aerosol interactions and feedbacks within the Earth system, Atmos. Chem. Phys., 10 ( 4 ), 1701 – 1737, doi: 10.5194/acp-10-1701-2010.
dc.identifier.citedreferenceEddingsaas, N. C., D. G. VanderVelde, and P. O. Wennberg ( 2010 ), Kinetics and products of the acid‐catalyzed ring‐opening of atmospherically relevant butyl epoxy alcohols, J. Phys. Chem. A, 114 ( 31 ), 8106 – 8113.
dc.identifier.citedreferenceErvens, B., B. J. Turpin, and R. J. Weber ( 2011 ), Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies, Atmos. Chem. Phys., 11 ( 21 ), 11,069 – 11,102, doi: 10.5194/acp-11-11069-2011.
dc.identifier.citedreferenceGaston, C. J., T. P. Riedel, Z. F. Zhang, A. Gold, J. D. Surratt, and J. A. Thornton ( 2014 ), Reactive uptake of an isoprene‐derived epoxydiol to submicron aerosol particles, Environ. Sci. Technol., 48 ( 19 ), 11,178 – 11,186.
dc.identifier.citedreferenceGuenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron ( 2006 ), Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181 – 3210.
dc.identifier.citedreferenceGuenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang ( 2012 ), The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5 ( 6 ), 1471 – 1492, doi: 10.5194/gmd-5-1471-2012.
dc.identifier.citedreferenceHallquist, M., et al. ( 2009 ), The formation, properties and impact of secondary organic aerosol: Current and emerging issues, Atmos. Chem. Phys., 9 ( 14 ), 5155 – 5236.
dc.identifier.citedreferenceHeald, C. L., et al. ( 2008 ), Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change, J. Geophys. Res., 113, D05211, doi: 10.1029/2007JD009092.
dc.identifier.citedreferenceHeald, C. L., M. J. Wilkinson, and R. K. Monson ( 2009 ), Response of isoprene emission to ambient CO 2 changes and implications for global budgets, Global Change Biol., 15 ( 5 ), 1127 – 1140, doi: 10.1111/J.1365-2486.2008.01802.X.
dc.identifier.citedreferenceHoyle, C. R., G. Myhre, T. K. Berntsen, and I. S. A. Isaksen ( 2009 ), Anthropogenic influence on SOA and the resulting radiative forcing, Atmos. Chem. Phys., 9, 2715 – 2728, doi: 10.5194/acp-9-2715-2009.
dc.identifier.citedreferenceHu, W. W., et al. ( 2015 ), Characterization of a real‐time tracer for isoprene epoxydiols‐derived secondary organic aerosol (IEPOX‐SOA) from aerosol mass spectrometer measurements, Atmos. Chem. Phys. Discuss., 15 ( 8 ), 11,223 – 11,276, doi: 10.5194/acpd-15-11223-2015.
dc.identifier.citedreferenceIntergovernmental Panel on Climate Change (IPCC) ( 2013 ), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., 1535 pp., Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceIto, A., S. Sillman, and J. E. Penner ( 2007 ), Effects of additional nonmethane volatile organic compounds, organic nitrates, and direct emissions of oxygenated organic species on global tropospheric chemistry, J. Geophys. Res., 112, D06309, doi: 10.1029/2005jd006556.
dc.identifier.citedreferenceJimenez, J. L., et al. ( 2009 ), Evolution of organic aerosols in the atmosphere, Science, 326 ( 5959 ), 1525 – 1529, doi: 10.1126/science.1180353.
dc.identifier.citedreferenceKulmala, M., et al. ( 2004 ), A new feedback mechanism linking forests, aerosols, and climate, Atmos. Chem. Phys., 4 ( 2 ), 557 – 562, doi: 10.5194/acp-4-557-2004.
dc.identifier.citedreferenceLamarque, J. F., L. K. Emmons, and P. G. Hess ( 2012 ), CAM‐Chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5, 369 – 411, doi: 10.5194/gmd-5-369-2012.
dc.identifier.citedreferenceLathiere, J., D. A. Hauglustaine, N. De Noblet‐Ducoudré, G. Krinner, and G. A. Folberth ( 2005 ), Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model, Geophys. Res. Lett., 32, L20818, doi: 10.1029/2005GL024164.
dc.identifier.citedreferenceLawrence, D. M., et al. ( 2011 ), Parameterization improvements and functional and structural advances in version 4 of the Community Land Model, J. Adv. Model. Earth Syst., 3, M03001, doi: 10.1029/2011MS000045.
dc.identifier.citedreferenceLawrence, P. J., et al. ( 2012 ), Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100, J. Clim., 25 ( 9 ), 3071 – 3095, doi: 10.1175/JCLI-D-11-00256.1.
dc.identifier.citedreferenceLiao, H., W. T. Chen, and J. H. Seinfeld ( 2006 ), Role of climate change in global predictions of future tropospheric ozone and aerosols, J. Geophys. Res., 111, D12304, doi: 10.1029/2005JD006852.
dc.identifier.citedreferenceLin, G., J. E. Penner, S. Sillman, D. Taraborrelli, and J. Lelieveld ( 2012 ), Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates and peroxides, Atmos. Chem. Phys., 12 ( 10 ), 4743 – 4774, doi: 10.5194/acp-12-4743-2012.
dc.identifier.citedreferenceLin, G., S. Sillman, J. E. Penner, and A. Ito ( 2014 ), Global modeling of SOA: The use of different mechanisms for aqueous‐phase formation, Atmos. Chem. Phys., 14 ( 11 ), 5451 – 5475, doi: 10.5194/acp-14-5451-2014.
dc.identifier.citedreferenceLiu, H., D. J. Jacob, I. Bey, and R. M. Yantosca ( 2001 ), Constraints from 210 Pb and 7 Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res., 106 ( D11 ), 12,109 – 12,128, doi: 10.1029/2000JD900839.
dc.identifier.citedreferenceMari, C., D. J. Jacob, and P. Bechtold ( 2000 ), Transport and scavenging of soluble gases in a deep convective cloud, J. Geophys. Res., 105, 22,255 – 22,267, doi: 10.1029/2000JD900211.
dc.identifier.citedreferenceMeehl, G. A., W. M. Washington, B. D. Santer, W. D. Collins, J. M. Arblaster, A. Hu, D. M. Lawrence, H. Teng, L. E. Buja, and W. G. Strand ( 2006 ), Climate change projections for the twenty‐first century and climate change commitment in the CCSM3, J. Clim., 19 ( 11 ), 2597 – 2616.
dc.identifier.citedreferenceMeehl, G. A., W. M. Washington, J. M. Arblaster, A. Hu, H. Teng, J. E. Kay, A. Gettelman, D. M. Lawrence, B. M. Sanderson, and W. G. Strand ( 2013 ), Climate change projections in CESM1(CAM5) compared to CCSM4, J. Clim., 26 ( 17 ), 6287 – 6308, doi: 10.1175/JCLI-D-12-00572.1.
dc.identifier.citedreferenceNguyen, T. K. V., S. L. Capps, and A. G. Carlton ( 2015 ), Decreasing aerosol water is consistent with OC trends in the southeast U.S., Environ. Sci. Technol., doi: 10.1021/acs.est.5b00828.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.