Show simple item record

Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition

dc.contributor.authorZak, Donald R.
dc.contributor.authorFreedman, Zachary B.
dc.contributor.authorUpchurch, Rima A.
dc.contributor.authorSteffens, Markus
dc.contributor.authorKögel‐knabner, Ingrid
dc.date.accessioned2017-02-02T22:02:08Z
dc.date.available2018-04-02T18:03:23Zen
dc.date.issued2017-02
dc.identifier.citationZak, Donald R.; Freedman, Zachary B.; Upchurch, Rima A.; Steffens, Markus; Kögel‐knabner, Ingrid (2017). "Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition." Global Change Biology 23(2): 933-944.
dc.identifier.issn1354-1013
dc.identifier.issn1365-2486
dc.identifier.urihttps://hdl.handle.net/2027.42/136051
dc.description.abstractAccumulating evidence indicates that future rates of atmospheric N deposition have the potential to increase soil C storage by reducing the decay of plant litter and soil organic matter (SOM). Although the microbial mechanism underlying this response is not well understood, a decline in decay could alter the amount, as well as biochemical composition of SOM. Here, we used sizeâ density fractionation and solidâ state 13Câ NMR spectroscopy to explore the extent to which declines in microbial decay in a longâ term (ca. 20 yrs.) N deposition experiment have altered the biochemical composition of forest floor, bulk mineral soil, as well as free and occluded particulate organic matter. Significant amounts of organic matter have accumulated in occluded particulate organic matter (~20%; oPOM); however, experimental N deposition had not altered the abundance of carboxyl, aryl, alkyl, or O/Nâ alkyl C in forest floor, bulk mineral soil, or any soil fraction. These observations suggest that biochemically equivalent organic matter has accumulated in oPOM at a greater rate under experimental N deposition, relative to the ambient treatment. Although we do not understand the process by which experimental N deposition has fostered the occlusion of organic matter by mineral soil particles, our results highlight the importance of interactions among the products of microbial decay and the chemical and physical properties of silt and clay particles that occlude organic matter from microbial attack. Because oPOM can reside in soils for decades to centuries, organic matter accumulating under future rates of anthropogenic N deposition could remain in soil for long periods of time. If temperate forest soils in the Northern Hemisphere respond like those in our experiment, then unabated deposition of anthropogenic N from the atmosphere has the potential to foster greater soil C storage, especially in fineâ texture forest soils.
dc.publisherMacmillan Publishing Co, Inc
dc.publisherWiley Periodicals, Inc.
dc.subject.othersoil C storage
dc.subject.otherparticulate organic matter
dc.subject.othersoil organic matter
dc.subject.otheranthropogenic N deposition
dc.subject.other13Câ NMR
dc.titleAnthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136051/1/gcb13480_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/136051/2/gcb13480.pdf
dc.identifier.doi10.1111/gcb.13480
dc.identifier.sourceGlobal Change Biology
dc.identifier.citedreferenceRasmussen CG, Torn MS, Southard RJ ( 2005 ) Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. Soil Science Society of America Journal, 69, 1711 â 1721.
dc.identifier.citedreferenceMaaroufi NI, Nordin A, Hasselquist NJ, Bach LH, Palmqvist K, Gundale MJ ( 2015 ) Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Global Change Biology, 21, 3169 â 3180.
dc.identifier.citedreferenceMacDonald NW, Burton AJ, Jurgensen MF et al. ( 1991 ) Variation in forest soil properties along a Greatâ Lakes airâ pollution gradient. Soil Science Society of America Journal, 55, 1709 â 1713.
dc.identifier.citedreferenceMagnani FM, Mencuccini M, Borghetti M et al. ( 2007 ) The human footprint in the carbon cycle of temperate and boreal forests. Nature, 477, 848 â 850.
dc.identifier.citedreferenceMcFarlane K, Torn M, Hanson P et al. ( 2012 ) Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. Biogeochemistry, 8, 1 â 20.
dc.identifier.citedreferenceMueller CV, Kögelâ Knabner I ( 2009 ) Soil organic carbon stocks, distribution and composition affected by historic land use changes on adjacent sites. Biology and Fertility of Soils, 45, 347 â 359.
dc.identifier.citedreferenceNadelhoffer KJ, Emmet BA, Gundersen P et al. ( 1999 ) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398, 145 â 148.
dc.identifier.citedreferencePregitzer KS, Zak DR, Burton J, Ashby JA ( 2004 ) Chronic nitrate additions dramatically increase the export of carbon and nitrogen in northern hardwood forests. Biogeochemistry, 68, 179 â 197.
dc.identifier.citedreferencePregitzer KS, Burton AJ, Zak DR, Talhelm AF ( 2008 ) Simulated chronic N deposition increases carbon storage in northern temperate forests. Global Change Biology, 14, 142 â 153.
dc.identifier.citedreferencePuget P, Chenau C, Balsesdent J ( 1995 ) Dynamics of soil organic matter associated with particleâ size fractions of waterâ stable aggregates. European Journal of Soil Science, 51, 595 â 605.
dc.identifier.citedreferenceRillig MC ( 2004 ) Arbuscular mycorrhizae, glomalin and soil aggregation. Canadian Journal of Soil Science, 84, 355 â 363.
dc.identifier.citedreferenceSchmidt MWI, Torn MS, Abiven S et al. ( 2011 ) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49 â 56.
dc.identifier.citedreferenceSteffens M, Kölbl A, Kögelâ Knabner I ( 2009 ) Alteration of soil organic matter pools and aggregation in semiâ arid steppe topsoils as driven by organic matter inputs. European Journal of Soil Science, 60, 198 â 212.
dc.identifier.citedreferenceSteffens M, Kölbl A, Schörk GB, Kögelâ Knabner I ( 2011 ) Distribution of soil organic matter fractions and aggregate size classes in grazed semiarid steppe soil profiles. Plant and Soil, 338, 63 â 81.
dc.identifier.citedreferenceThomas DC, Zak DR, Filley TR ( 2012 ) Chronic N deposition does not apparently alter the biochemical composition of forest floor and soil organic matter. Soil Biology and Biochemistry, 54, 7 â 13.
dc.identifier.citedreferenceThornton PE, Doney SC, Lindsay K et al. ( 2009 ) Carbonâ nitrogen interactions regulate climateâ carbon cycle feedbacks: results from an atmosphereâ ocean general circulation model. Biogeosciences, 6, 2099 â 2120.
dc.identifier.citedreferenceTiunov AV, Hale CM, Holdsworth AR, Vesvolodovâ Perel TS ( 2006 ) Invasion patterns of Lumbricidae into previously earthwormâ free areas of northeastern Europe and the western Great Lakes Region of North America. Biological Invasions, 8, 1223 â 1234.
dc.identifier.citedreferenceVan Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM ( 2010 ) Simulated nitrogen deposition causes a decline in the intraâ and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems, 13, 683 â 695.
dc.identifier.citedreferenceVirto I, Barre P, Chenu C ( 2008 ) Microaggregation and organic matter storage at the siltâ size scale. Geoderma, 146, 326 â 335.
dc.identifier.citedreferenceWhittinghill KA, Currie WS, Zak DR, Burton AJ, Pregitzer KS ( 2012 ) Anthropogenic N deposition increases soil C storage by decreasing the extent of litter decay: analysis of field observations with a biogeochemical model. Ecosystems, 15, 450 â 461.
dc.identifier.citedreferenceXia M, Talhelm AF, Pregitzer KS ( 2015 ) Fine roots are the dominant source of recalcitrant plant litter in sugar mapleâ dominated northern hardwood forests. New Phytologist, 208, 715 â 726.
dc.identifier.citedreferenceYamashita T, Flessa H, John B, Helfrich M, Ludwig B ( 2006 ) Organic matter in density fractions of waterâ stable aggregates in silty soils: effect of land use. Soil Biology and Biochemistry, 38, 3222 â 3234.
dc.identifier.citedreferenceZak DR, Holmes WE, Burton AJ, Pregitzer KS, Talhelm AF ( 2008 ) Atmospheric NO3â deposition increases soil organic matter by slowing decomposition in a northern hardwood ecosystem. Ecological Applications, 18, 2016 â 2027.
dc.identifier.citedreferenceZak DR, Pregitzer KS, Burton AJ, Edwards IP, Kellner H ( 2011 ) Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecology, 4, 386 â 395.
dc.identifier.citedreferenceZeller B, Dambrine E ( 2011 ) Coarse particulate organic matter is the primary source of mineral N in the topsoil of three beech forests. Soil Biology and Biochemistry, 43, 542 â 550.
dc.identifier.citedreferenceAmelung W, Brodowski S, Sandhageâ Hofmann A, Bol R ( 2008 ) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Advances in Agronomy, 100, 155 â 250.
dc.identifier.citedreferenceBaldock JA, Oades JM, Nelson PN et al. ( 1997 ) Assessing the extent of decomposition of natural organic materials using solidâ state 13 C NMR spectroscopy. Australian Journal of Soil Research, 35, 1061 â 1083.
dc.identifier.citedreferenceBesnard E, Chenu C, Balesdent J et al. ( 1996 ) Fate of particulate organic matter in soil aggregates during cultivation. European Journal of Soil Science, 47, 495 â 503.
dc.identifier.citedreferenceBimüller C, Naumann PS, Buegger F et al. ( 2013 ) Rapid transfer of 15N from labeled beech leaf litter to functional soil organic matter fractions in a Rendzic Leptosol. Soil Biology and Biochemistry, 58, 323 â 331.
dc.identifier.citedreferenceBimüller C, Dannenmann M, Tejedor J et al. ( 2014 ) Prolonged summer droughts retard soil N processing and stabilization in organâ mineral fractions. Soil Biology and Biochemistry, 68, 241 â 251.
dc.identifier.citedreferenceBraun E ( 1950 ) Deciduous Forests of Eastern North America. Macmillan Publishing Co, Inc, New York.
dc.identifier.citedreferenceBurd AB, Frey S, Cabre A et al. ( 2016 ) Terrestrial and marine perspectives on modeling organic matter degradation pathways. Global Change Biology, 22, 121 â 136.
dc.identifier.citedreferenceBurton AJ, Ramm CW, Reed DD, Pregitzer KS ( 1991 ) Use of multivariate methods in forest research site selection. Canadian Journal of Forest Research, 21, 573 â 1580.
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Crawford JN, Zogg GP, Zak DR ( 2004 ) Chronic NO3â additions reduce soil respiration in northern hardwood forests. Global Change Biology, 10, 1080 â 1091.
dc.identifier.citedreferenceBurton AJ, Jarvey JJ, Jarvi MP, Zak DR, Pregitzer KS ( 2012 ) Chronic N deposition alters root respiration: tissue N relationships in northern hardwood forests. Global Change Biology, 18, 258 â 266.
dc.identifier.citedreferenceChenu C, Plante AF ( 2006 ) Clayâ sized organoâ mineral complexes in a cultivation chronosequence: revisiting the concept of the â primary organoâ mineral complexâ . European Journal of Soil Science, 57, 596 â 607.
dc.identifier.citedreferenceCotrufo MF, Soong JL, Horton AJ et al. ( 2015 ) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776 â 779.
dc.identifier.citedreferenceDeForest JL, Zak DR, Pregitzer KS, Burton AJ ( 2004 ) Experimental NO 3 â additions alter microbial community function in northern hardwood forests. Soil Science Society of America Journal, 68, 132 â 138.
dc.identifier.citedreferenceDeForest JL, Zak DR, Pregitzer KS, Burton AJ ( 2005 ) Atmospheric NO 3 â deposition, declines in decomposition and increases in DOC: test of a potential mechanism. Soil Science Society of American Journal, 69, 1233 â 1237.
dc.identifier.citedreferenceEdwards IP, Zak DR, Kellner H, Eisenlord SD, Pregitzer KS ( 2011 ) Simulated atmospheric N deposition alters fungal community composition and suppresses lignocellulolytic gene expression in forest floor of a northern hardwood forest. PLoS ONE, 6, e20421.
dc.identifier.citedreferenceFreedman Z, Zak DR ( 2014 ) Atmospheric N deposition increases bacterial laccaseâ like multicopper oxidases: implications for organic matter decay. Applied and Environmental Microbiology, 80, 4460 â 4468.
dc.identifier.citedreferenceFreedman Z, Zak DR ( 2015 ) Atmospheric N deposition alters coâ occurrence in saprotrophic bacterial communities. Molecular Ecology, 24, 3170 â 3180.
dc.identifier.citedreferenceFreedman Z, Upchurch R, Cline LC, Zak DR ( 2016 ) Anthropogenic N deposition slows decay by favoring bacterial metabolism: insights from metagenomic analyses. Frontiers in Microbiology, 7, 259, doi: 10.3389/fmicb.2016.00259.
dc.identifier.citedreferenceFrey SA, Ollinger S, Nadelhoffer KJ et al. ( 2015 ) Chronic nitrogen additions suppress decomposition and sequester carbon in temperate forests. Biogeochemistry, 121, 305 â 316.
dc.identifier.citedreferenceGalloway JN, Dentener FJ, Capone DG et al. ( 2004 ) Nitrogen cycles; past, present and future. Biogeochemistry, 70, 153 â 226.
dc.identifier.citedreferenceGolchin A, Oades JM, Skjemstad JO, Clarke P ( 1994 ) Study of free and occluded particulate organic matter in soils by solidâ state Câ 13 Cp/Mas nmrâ spectroscopy and scanning electronâ microscopy. Australian Journal of Soil Science, 32, 285 â 309.
dc.identifier.citedreferenceHassett JE, Zak DR, Blackwood CB, Pregitzer KS ( 2009 ) Are basidiomycete laccase gene abundance and composition related to reduced lignolytic activity under elevated atmospheric NO3â deposition in a northern hardwood forest? Microbial Ecology, 57, 728 â 739.
dc.identifier.citedreferenceHatton Pâ J, Kleber M, Zeller B et al. ( 2012 ) Transfer of litterâ derived N to soil mineralâ organic associations: evidence from decadal 15 N tracer experiments. Organic Geochemistry, 42, 1489 â 1501.
dc.identifier.citedreferenceKaiser K, Kalbitz K ( 2012 ) Cycling downwards â dissolved organic matter in soils. Soil Biology and Biochemistry, 52, 29 â 32.
dc.identifier.citedreferenceKleber M ( 2010 ) What is recelcitrant soil organic matter? Environmental Chemistry, 7, 320 â 332.
dc.identifier.citedreferenceKleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS ( 2015 ) Mineralâ organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy, 130, 1 â 140.
dc.identifier.citedreferenceKnicker H, Gonzalezâ Vila FJ, Polvillo O, Gonzalez JA, Almendros G ( 2005 ) Fireâ induced transformation of Câ and Nâ forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest ( Pinus pinaster ). Soil Biology and Biochemistry, 37, 701 â 718.
dc.identifier.citedreferenceKögelâ Knabner I ( 2002 ) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34, 139 â 162.
dc.identifier.citedreferenceLamarque JF, Kielhl JT, Brassuer GP et al. ( 2005 ) Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition. Journal of Geophysical Research, 110, D19303.
dc.identifier.citedreferenceLehmann J, Kleber M ( 2015 ) The contentious nature of soil organic matter. Nature, 528, 60 â 68.
dc.identifier.citedreferenceLiu LL, Greaver TL ( 2010 ) A global perspective on belowground carbon dynamics under nitrogen deposition. Ecology Letters, 13, 819 â 828.
dc.identifier.citedreferencevon Lützow M, Kögelâ Knabner I, Klemens K et al. ( 2007 ) SOM fraction methods: relevance to functional pools and stabilization mechanisms. Soil Biology and Biochemistry, 39, 321â 83â 2207.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.