Joint Inventory and Fulfillment Decisions for Omnichannel Retail Networks
Govindarajan, Aravind; Sinha, Amitabh; Uichanco, Joline
2018-01
View/ Open
Subjects
omnichannel e-commerce inventory management pooling heuristic asymptotic analysis
Abstract
With e-commerce growing at a rapid pace compared to traditional retail, many brick-and-mortar firms are supporting their online growth through an omnichannel approach, which integrates inventories across multiple channels. We analyze the inventory optimization of three such omnichannel fulfillment systems for a retailer facing two demand streams (online and in-store). The systems differ in the level of fulfillment integration, ranging from no integration (separate fulfillment center for online orders), to partial integration (online orders fulfilled from nearest stores) and full integration (online orders fulfilled from nearest stores, but in case of stockouts, can be fulfilled from any store). We obtain optimal order-up-to quantities for the analytical models in the two-store, single-period setting. We then extend the models to a generalized multi-store setting, which includes a network of traditional brick-and-mortar stores, omnichannel stores and online fulfillment centers. We develop a simple heuristic for the fully-integrated model, which is near optimal in an asymptotic sense for a large number of omnichannel stores, with a constant approximation factor dependent on cost parameters. We augment our analytical results with a realistic numerical study for networks embedded in the mainland US, and find that our heuristic provides significant benefits compared to policies used in practice. Our heuristic achieves reduced cost, increased efficiency and reduced inventory imbalance, all of which alleviate common problems facing omnichannel retailing firms. Finally, for the multiperiod setting under lost sales, we show that a base-stock policy is optimal for the fully-integrated model.Other Identifiers
1341
Other Identifiers
1341
Subject Classification
Operations and Management Science
Types
Working Paper
Metadata
Show full item recordRemediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.