Show simple item record

Bounds on the calving cliff height of marine terminating glaciers

dc.contributor.authorMa, Yue
dc.contributor.authorTripathy, Cory S.
dc.contributor.authorBassis, Jeremy N.
dc.date.accessioned2017-04-13T20:33:59Z
dc.date.available2018-05-04T20:56:57Zen
dc.date.issued2017-02-16
dc.identifier.citationMa, Yue; Tripathy, Cory S.; Bassis, Jeremy N. (2017). "Bounds on the calving cliff height of marine terminating glaciers." Geophysical Research Letters 44(3): 1369-1375.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/136240
dc.description.abstractIncreased calving and rapid retreat of glaciers can contribute significantly to sea level rise, but the processes controlling glacier retreat remain poorly understood. We seek to improve our understanding of calving by investigating the stress field controlling tensile and shear failure using a 2‐D full‐Stokes finite element model. Using idealized rectangular geometries, we find that when rapidly sliding glaciers thin to near buoyancy, full thickness tensile failure occurs, similar to observations motivating height‐above‐buoyancy calving laws. In contrast, when glaciers are frozen to their beds, basal crevasse penetration is suppressed and calving is minimal. We also find that shear stresses are largest when glaciers are thickest. Together, the tensile and shear failure criteria map out a stable envelope in an ice‐thickness‐water‐depth diagram. The upper and lower bounds on cliff height can be incorporated into numerical ice sheet models as boundary conditions, thus bracketing the magnitude of calving rates in marine‐terminating glaciers.Key PointsWe simulated tensile and shear failure within idealized glaciers using a full‐Stokes ice dynamics modelSurface and basal crevasses intersect when rapidly sliding glaciers thin to buoyancy, and shear failure occurs when ice thickness is largeTensile and shear failure mechanisms together provide lower and upper bounds on permissible ice thickness for any given water depth
dc.publisherDigital Media
dc.publisherWiley Periodicals, Inc.
dc.subject.othercalving
dc.subject.othercrevasse
dc.subject.otherfailure
dc.subject.othermodel
dc.subject.otherdynamics
dc.subject.otherglacier
dc.titleBounds on the calving cliff height of marine terminating glaciers
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136240/1/grl55458.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136240/2/grl55458-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136240/3/grl55458_am.pdf
dc.identifier.doi10.1002/2016GL071560
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferencePelto, M. S., and C. R. Warren ( 1991 ), Relationship between tidewater glacier calving velocity and water depth at the calving front, Ann. Glaciol., 15, 115 – 118.
dc.identifier.citedreferenceMeier, M. F., and A. Post ( 1987 ), Fast tidewater glaciers, J. Geophys. Res., 92 ( B9 ), 9051 – 9058.
dc.identifier.citedreferenceMobasher, M. E., R. Duddu, J. N. Bassis, and H. Waisman ( 2016 ), Modeling hydraulic fracture of glaciers using continuum damage mechanics, J. Glaciol., 62 ( 234 ), 794 – 804.
dc.identifier.citedreferenceNick, F. M., C. J. van der Veen, A. Vieli, and D. I. Benn ( 2010 ), A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics, J. Glaciol., 56 ( 199 ), 781 – 794.
dc.identifier.citedreferenceNye, J. F. ( 1955 ), Comments on Dr Loewe’s letter and notes on crevasses, J. Glaciol., 2 ( 17 ), 512 – 514.
dc.identifier.citedreferenceOtero, J., F. J. Navarro, C. Martin, M. L. Cuadrado, and M. I. Corcuera ( 2010 ), A three‐dimensional calving model: Numerical experiments on Johnsons Glacier, Livingston Island, Antarctica, J. Glaciol., 56 ( 196 ), 200 – 214.
dc.identifier.citedreferencePaterson, W. S. B. ( 1994 ), The Physics of Glaciers, 3rd ed., Reed Educ. and Prof., Oxford, U. K.
dc.identifier.citedreferenceWeertman, J. ( 1973 ), Can a water‐filled crevasse reach the bottom surface of a glacier?, Inter. Assoc. Hydrol. Sci. Publ., 95, 139 – 145.
dc.identifier.citedreferencePetrovic, J. J. ( 2003 ), Review mechanical properties of ice and snow, J. Mater. Sci., 38 ( 1 ), 1 – 6.
dc.identifier.citedreferencePollard, D., and R. M. DeConto ( 2009 ), Modelling West Antarctic ice sheet growth and collapse through the past five million years, Nature, 458 ( 7236 ), 329 – 332.
dc.identifier.citedreferencePralong, A., and M. Funk ( 2005 ), Dynamic damage model of crevasse opening and application to glacier calving, J. Geophys. Res., 110, B01309, doi: 10.1029/2004JB003104.
dc.identifier.citedreferenceReeh, N. ( 1968 ), On the calving of ice from floating glaciers and ice shelves, J. Glaciol., 7 ( 50 ), 215 – 232.
dc.identifier.citedreferenceRist, M. A., P. R. Sammonds, S. A. F. Murrell, P. G. Meredith, C. S. M. Doake, H. Oerter, and K. Matsuki ( 1999 ), Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing, J. Geophys. Res., 104 ( B2 ), 2973 – 2987.
dc.identifier.citedreferenceSchulson, E. M. ( 1999 ), The structure and mechanical behavior of ice, J. Miner. Met. Mater. Soc., 51 ( 2 ), 21 – 27.
dc.identifier.citedreferenceSikonia, W. G. ( 1982 ), Finite element glacier dynamics model applied to Columbia Glacier, Alaska, U.S. Geol. Surv. Prof. Pap. 1258‐B, U.S. Gov. Print. Off., Washington, D. C.
dc.identifier.citedreferenceSmith, R. A. ( 1976 ), The application of fracture mechanics to the problem of crevasse penetration, J. Glaciol., 17 ( 76 ), 223 – 228.
dc.identifier.citedreferenceTruffer, M., and R. Motyka ( 2016 ), Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings, Rev. Geophys., 54, 220 – 239, doi: 10.1002/2015RG000494.
dc.identifier.citedreferencevan der Veen, C. J. ( 1996 ), Tidewater calving, J. Glaciol., 42 ( 141 ), 375 – 385.
dc.identifier.citedreferencevan der Veen, C. J. ( 1998 ), Fracture mechanics approach to penetration of surface crevasses on glaciers, Cold Reg. Sci. Technol., 27 ( 1 ), 31 – 47.
dc.identifier.citedreferencevan der Veen, C. J. ( 2002 ), Calving glaciers, Prog. Phys. Geogr., 26 ( 1 ), 96 – 122.
dc.identifier.citedreferencevan der Veen, C. J. ( 2007 ), Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers, Geophys. Res. Lett., 34, L01501, doi: 10.1029/2006GL028385.
dc.identifier.citedreferencevan der Veen, C. J. ( 2013 ), Fundamentals of Glacier Dynamics, 2nd ed., CRC Press, Boca Raton, Fla.
dc.identifier.citedreferenceVaughan, D., et al. ( 2013 ), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, book section 4, pp. 317–382, Cambridge Univ. Press, Cambridge, U. K., and New York.
dc.identifier.citedreferenceWagner, T. J. W., T. D. James, T. Murray, and D. Vella ( 2016 ), On the role of buoyant flexure in glacier calving, Geophys. Res. Lett., 43, 232 – 240, doi: 10.1002/2015GL067247.
dc.identifier.citedreferenceHughes, T. J. ( 1992 ), Theoretical calving rates from glaciers along ice walls grounded in water of variable depths, J. Glaciol., 38 ( 129 ), 282 – 294.
dc.identifier.citedreferenceJames, T. D., T. Murray, N. Selmes, K. Scharrer, and M. O’Leary ( 2014 ), Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier, Nat. Geosci., 7 ( 8 ), 593 – 596.
dc.identifier.citedreferenceAlbrecht, T., and A. Levermann ( 2012 ), Fracture field for large‐scale ice dynamics, J. Glaciol., 58 ( 207 ), 165 – 176.
dc.identifier.citedreferenceAlbrecht, T., and A. Levermann ( 2014 ), Fracture‐induced softening for large‐scale ice dynamics, Cryosphere, 8 ( 2 ), 587 – 605.
dc.identifier.citedreferenceAlley, R. B., H. J. Horgan, I. Joughin, K. M. Cuffey, T. K. Dupont, B. R. Parizek, S. Anandakrishnan, and J. Bassis ( 2008 ), A simple law for ice‐shelf calving, Science, 322 ( 5906 ), 1344 – 1344.
dc.identifier.citedreferenceAlnæs, M. S., J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells ( 2015 ), The FEniCS project version 1.5, Arch. Numer. Softw., 3 ( 100 ), doi: 10.11588/ans.2015.100.20553.
dc.identifier.citedreferenceAmundson, J. M., and M. Truffer ( 2010 ), A unifying framework for iceberg‐calving models, J. Glaciol., 56 ( 199 ), 822 – 830.
dc.identifier.citedreferenceBassis, J. N. ( 2011 ), The statistical physics of iceberg calving and the emergence of universal calving laws, J. Glaciol., 57 ( 201 ), 3 – 16.
dc.identifier.citedreferenceBassis, J. N., and Y. Ma ( 2015 ), Evolution of basal crevasses links ice shelf stability to ocean forcing, Earth Planet. Sci. Lett., 409, 203 – 211.
dc.identifier.citedreferenceBassis, J. N., and C. C. Walker ( 2012 ), Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice, Proc. R. Soc. A, 468 ( 2140 ), 913 – 931.
dc.identifier.citedreferenceBassis, J. N., S. V. Petersen, and L. M. Cathles ( 2017 ), Ice sheet collapse triggered by ocean forcing and modulated by isostatic adjustment, Nature, doi: 10.1038/nature21069, in press.
dc.identifier.citedreferenceBenn, D. I., C. R. Warren, and R. H. Mottram ( 2007a ), Calving processes and the dynamics of calving glaciers, Earth Sci. Rev., 82 ( 3 ), 143 – 179.
dc.identifier.citedreferenceBenn, D. I., N. R. J. Hulton, and R. H. Mottram ( 2007b ), ’Calving laws’, ’sliding laws’ and the stability of tidewater glaciers, Ann. Glaciol., 46 ( 1 ), 123 – 130.
dc.identifier.citedreferenceBorstad, C. P., A. Khazendar, E. Larour, M. Morlighem, E. Rignot, M. P. Schodlok, and H. Seroussi ( 2012 ), A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically‐based calving law, Geophys. Res. Lett., 39, L18502, doi: 10.1029/2012GL053317.
dc.identifier.citedreferenceBrown, C. S., M. F. Meier, and A. Post ( 1982 ), Calving speed of Alaska tidewater glaciers, with application to Columbia glacier, U.S. Geol. Surv. Prof. Pap. 1258‐C., U.S. Gov. Print. Off., Washington, D. C.
dc.identifier.citedreferenceCook, S., T. Zwinger, I. Rutt, S. O’Neel, and T. Murray ( 2012 ), Testing the effect of water in crevasses on a physically based calving model, Ann. Glaciol., 53 ( 60 ), 90 – 96.
dc.identifier.citedreferenceDeConto, R. M., and D. Pollard ( 2016 ), Contribution of Antarctica to past and future sea‐level rise, Nature, 531 ( 7596 ), 591 – 597.
dc.identifier.citedreferenceDepoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. van den Broeke, and G. Moholdt ( 2013 ), Calving fluxes and basal melt rates of Antarctic ice shelves, Nature, 502 ( 7469 ), 89 – 92.
dc.identifier.citedreferenceDuddu, R., J. Bassis, and H. Waisman ( 2013 ), A numerical investigation of surface crevasse propagation in glaciers using nonlocal continuum damage mechanics, Geophys. Res. Lett., 40, 3064 – 3068, doi: 10.1002/grl.50602.
dc.identifier.citedreferenceFrederking, R. M. W., O. J. Svec, and G. W. Timco ( 1988 ), On measuring the shear strength of ice, Tech. Rep., Natl. Res. Counc. Canada, Inst. for Res. in Constr., Canada.
dc.identifier.citedreferenceGogineni, P., and J. Paden ( 2012 ), CReSIS Radar Depth Sounder Data, Digital Media, Lawrence, Kansas, USA. [Available at http://data.cresis.ku.edu/.]
dc.identifier.citedreferenceHoreth, J. M. ( 1948 ), Tensile strength and shear strength of ice, Master’s thesis, Ann Arbor, Mich.
dc.identifier.citedreferenceJoughin, I., I. Howat, R. B. Alley, G. Ekstrom, M. Fahnestock, T. Moon, M. Nettles, M. Truffer, and V. C. Tsai ( 2008 ), Ice‐front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland, J. Geophys. Res., 113, F01004, doi: 10.1029/2007JF000837.
dc.identifier.citedreferenceKhan, S. A., A. Aschwanden, A. A. Bjørk, J. Wahr, K. K. Kjeldsen, and K. H. Kjær ( 2015 ), Greenland ice sheet mass balance: A review, Rep. Prog. Phys., 78 ( 4 ), 046801.
dc.identifier.citedreferenceKrug, J., J. Weiss, O. Gagliardini, and G. Durand ( 2014 ), Combining damage and fracture mechanics to model calving, Cryosphere, 8 ( 6 ), 2101 – 2117.
dc.identifier.citedreferenceLevermann, A., T. Albrecht, R. Winkelmann, M. Martin, M. Haseloff, and I. Joughin ( 2012 ), Kinematic first‐order calving law implies potential for abrupt ice‐shelf retreat, Cryosphere, 6 ( 2 ), 273 – 286.
dc.identifier.citedreferenceLiu, Y., J. C. Moore, X. Cheng, R. M. Gladstone, J. N. Bassis, H. Liu, J. Wen, and F. Hui ( 2015 ), Ocean‐driven thinning enhances iceberg calving and retreat of Antarctic ice shelves, Proc. Natl. Acad. Sci. U. S. A., 112 ( 11 ), 3263 – 3268.
dc.identifier.citedreferenceLogg, A., K.‐A. Mardal, and G. N. Wells ( 2012 ), Automated Solution of Differential Equations by the Finite Element Method, Springer, Berlin, doi: 10.1007/978-3-642-23099-8.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.