Show simple item record

Toward refined environmental scenarios for ecological risk assessment of down‐the‐drain chemicals in freshwater environments

dc.contributor.authorFranco, Antonio
dc.contributor.authorPrice, Oliver R
dc.contributor.authorMarshall, Stuart
dc.contributor.authorJolliet, Olivier
dc.contributor.authorVan den Brink, Paul J
dc.contributor.authorRico, Andreu
dc.contributor.authorFocks, Andreas
dc.contributor.authorDe Laender, Frederik
dc.contributor.authorAshauer, Roman
dc.date.accessioned2017-04-13T20:34:28Z
dc.date.available2018-05-15T21:02:50Zen
dc.date.issued2017-03
dc.identifier.citationFranco, Antonio; Price, Oliver R; Marshall, Stuart; Jolliet, Olivier; Van den Brink, Paul J; Rico, Andreu; Focks, Andreas; De Laender, Frederik; Ashauer, Roman (2017). "Toward refined environmental scenarios for ecological risk assessment of down‐the‐drain chemicals in freshwater environments." Integrated Environmental Assessment and Management 13(2): 233-248.
dc.identifier.issn1551-3777
dc.identifier.issn1551-3793
dc.identifier.urihttps://hdl.handle.net/2027.42/136263
dc.description.abstractCurrent regulatory practice for chemical risk assessment suffers from the lack of realism in conventional frameworks. Despite significant advances in exposure and ecological effect modeling, the implementation of novel approaches as high‐tier options for prospective regulatory risk assessment remains limited, particularly among general chemicals such as down‐the‐drain ingredients. While reviewing the current state of the art in environmental exposure and ecological effect modeling, we propose a scenario‐based framework that enables a better integration of exposure and effect assessments in a tiered approach. Global‐ to catchment‐scale spatially explicit exposure models can be used to identify areas of higher exposure and to generate ecologically relevant exposure information for input into effect models. Numerous examples of mechanistic ecological effect models demonstrate that it is technically feasible to extrapolate from individual‐level effects to effects at higher levels of biological organization and from laboratory to environmental conditions. However, the data required to parameterize effect models that can embrace the complexity of ecosystems are large and require a targeted approach. Experimental efforts should, therefore, focus on vulnerable species and/or traits and ecological conditions of relevance. We outline key research needs to address the challenges that currently hinder the practical application of advanced model‐based approaches to risk assessment of down‐the‐drain chemicals. Integr Environ Assess Manag 2017;13:233–248. © 2016 SETACKey PointsA scenario‐based approach that integrates spatially explicit exposure models with ecological effect models is needed to embrace ecological realism in risk assessment.Global‐ to catchment‐scale spatially explicit models can be used to identify areas of higher exposure hotspots and to generate exposure inputs into effect models.Mechanistic effect models demonstrate that it is feasible to extrapolate from individual‐level effects to effects at higher levels of biological organization and from laboratory to environmental conditions.Experimental efforts should focus on vulnerable species and/or traits and ecological conditions of relevance.
dc.publisherWiley Blackwell
dc.subject.otherDown‐the‐drain chemicals
dc.subject.otherEnvironmental scenario
dc.subject.otherEcological risk assessment
dc.subject.otherSpatial models
dc.subject.otherEcological models
dc.titleToward refined environmental scenarios for ecological risk assessment of down‐the‐drain chemicals in freshwater environments
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136263/1/ieam1801_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136263/2/ieam1801.pdf
dc.identifier.doi10.1002/ieam.1801
dc.identifier.sourceIntegrated Environmental Assessment and Management
dc.identifier.citedreferenceNyman AM, Hintermeister A, Schirmer K, Ashauer R. 2013. The insecticide imidacloprid causes mortality of the freshwater amphipod Gammarus pulex by interfering with feeding behavior. PLoS ONE 8: e62472.
dc.identifier.citedreferencePark RA, Clough JS, Coombs Wellman M. 2008. AQUATOX: Modelling environmental fate and ecological effects in aquatic ecosystems. Ecol Model 213: 1 – 15.
dc.identifier.citedreferencePoff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC. 2006. Functional trait niches of North American lotic insects: Traits‐based ecological applications in light of phylogenetic relationships. J North Am Benthol Soc 25: 730 – 775.
dc.identifier.citedreferencePoteat MD, Buchwalter DB. 2014. Phylogeny and size differentially influence dissolved Cd and Zn bioaccumulation parameters among closely related aquatic insects. Environ Sci Technol 48: 5274 – 5281.
dc.identifier.citedreferencePrice OR, Munday DK, Whelan MJ, Morris G, Young AR. 2009. Data requirements of GREAT‐ER: Modelling and validation using LAS in four UK catchments. Environ Pollut 157: 2610 – 2616.
dc.identifier.citedreferencePrice OR, Thorbek P. 2014. In response: Challenges and opportunities for landscape ecotoxicology and spatially explicit risk assessment − an industry perspective. Environ Toxicol Chem 33: 1194 – 1196.
dc.identifier.citedreferenceRico A, Van den Brink PJ. 2015. Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits and toxic mode of action. Environ Toxicol Chem 34: 1907 – 1917.
dc.identifier.citedreferenceRico A, Van den Brink PJ, Gylstra R, Focks A, Brock TCM. 2016. Developing ecological scenarios for the prospective aquatic risk assessment of pesticides. Integr Environ Assess Manag 2: 510 – 521.
dc.identifier.citedreferenceRubach MN, Ashauer R, Buchwalter DB, De Lange HJ, Hamer M, Preuss TG, Töpke K, Maund SJ. 2011. Framework for traits‐based assessment in ecotoxicology. Integr Environ Assess Manag 7: 172 – 186.
dc.identifier.citedreferenceRubach MN, Baird DJ, Boerwinkel MC, Maund SJ, Roessink I, Van Den Brink PJ. 2012. Species traits as predictors for intrinsic sensitivity of aquatic invertebrates to the insecticide chlorpyrifos. Ecotoxicology 21: 2088 – 2101.
dc.identifier.citedreferenceRuotsalainen AM, Akkanen J, Kukkonen JJV. 2010. Dissolved organic matter modulating the uptake, biotransformation, and elimination rates of pyrene in Daphnia magna. Environ Toxicol Chem 29: 2783 – 2791.
dc.identifier.citedreferenceScientific Committee on Emerging and Newly Identified Health Risks, Scientific Committee on Consumer Safety, and Scientific Committee on Health and Environmental Risks. 2013. Addressing the new challenges for risk assessment. [cited 2015 October 30]. Available from: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_037.pdf
dc.identifier.citedreferenceSourisseau S, Basseres A, Perieb F, Caquet T. 2008. Calibration, validation and sensitivity analysis of an ecosystem model applied to artificial streams. Water Res 42: 1167 – 1181.
dc.identifier.citedreferenceSommer U, Gliwicz ZM, Lampert W, Duncan A. 1986. The Peg‐Model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106: 433 – 471.
dc.identifier.citedreferenceSousa T, Domingos T, Poggiale JC, Kooijman SALM. 2010. Dynamic energy budget theory restores coherence in biology. Philos T Roy Soc B 365: 3413 – 3426.
dc.identifier.citedreferenceStampfli NC, Knillmann S, Liess M, Beketov MA. 2011. Environmental context determines community sensitivity of freshwater zooplankton to a pesticide. Aquatic Toxicol 104: 116 – 124.
dc.identifier.citedreferenceTannenbaum LV. 2013. Alternative ecological risk assessment: An innovative approach to understanding ecological assessments for contaminated sites. Sussex (UK): Wiley Blackwell. 228 p.
dc.identifier.citedreferenceTraas TP, Jansen JH, van den Brink PJ, Brock TCM, Aldenberg T. 2004. A freshwater food web model for the combined effects of nutrients and insecticide stress and subsequent recovery. Environ Toxicol Chem 23: 521 – 529.
dc.identifier.citedreferenceUsseglio‐Polatera P, Bournaud M, Richoux P, Tachet H. 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: Relationships and definition of groups with similar traits. Freshw Biol 43: 175 – 205.
dc.identifier.citedreferenceVan den Brink PJ. 2008. Ecological risk assessment: From book‐keeping to chemical stress ecology. Environ Sci Technol 42: 8999 – 9004.
dc.identifier.citedreferenceVan den Brink PJ, Alexander A, Desrosiers M, Goedkoop W, Goethals P, Liess M, Dyer S. 2011. Traits‐based approaches in bioassessment and ecological risk assessment: Strengths, weaknesses, opportunities and threats. Integr Environ Assess Manag 7: 198 – 208.
dc.identifier.citedreferenceVan den Brink PJ, Van Wijngaarden RPA, Lucassen WGH, Brock TCM, Leeuwangh P. 1996. Effects of the insecticide Dursban®4E (a.i. chlorpyrifos) in outdoor experimental ditches. II. Invertebrate community responses. Environ Toxicol Chem 15: 1143 – 1153.
dc.identifier.citedreferenceVan Straalen NM. 1994. Biodiversity of ecotoxicological responses in animals. Neth J Zool 44: 112 – 129.
dc.identifier.citedreferenceVermeire T, Rikken M, Attias L, Boccardi P, Boeije G, de Bruijn J, Brooke D, Comber M, Dolan B, Fischer S, et al. 2004. European Union System for the Evaluation of Substances, the second version. Chemosphere 59: 473 – 485.
dc.identifier.citedreferenceViaene KPJ, De Laender F, Rico A, Van den Brink PJ, Di Guardo A, Morselli M, Janssen CR. 2015. Species interactions and chemical stress: Combined effects of intraspecific and interspecific interactions and pyrene on Daphnia magna population dynamics. Environ Toxicol Chem 34: 1751 – 1759.
dc.identifier.citedreferenceVörösmarty CJ, Fekete BM, Meybeck M, Lammers R. 2000a. Geomorphometric attributes of the global system of rivers at 30‐minute spatial resolution (STN‐30). J Hydrol 237: 17 – 39.
dc.identifier.citedreferenceVörösmarty CJ, Fekete BM, Meybeck M, Lammers R. 2000b. Global system of rivers: Its role in organizing continental land mass and defining land‐to‐ocean linkages. Global Biogeochem Cy 14: 599 – 621.
dc.identifier.citedreferenceZhu Y, Price OR, Tao S, Jones KC, Sweetman A. 2014. A new multimedia contaminant fate model for China: How important are environmental parameters in influencing chemical persistence and long‐range transport potential ? Environ Int 69: 18 – 27.
dc.identifier.citedreferenceAlexander AC, Luis AT, Culp JM, Baird DJ, Cessna AJ. 2013. Can nutrients mask community responses to insecticide mixtures ? Ecotoxicology 22: 1085 – 1100.
dc.identifier.citedreferenceAronson D, Weeks J, Meylan B, Guiney DP, Howard HP. 2012. Environmental release, environmental concentrations, and ecological risk of N,N‐diethyl‐m‐toluamide (DEET). Integr Environ Assess Manag 8: 135 – 166.
dc.identifier.citedreferenceAshauer R, O’Connor I, Hintermeister A, Escher BI. 2015. Death dilemma and organism recovery in ecotoxicology. Environ Sci Technol 49: 10136 – 10146.
dc.identifier.citedreferenceAugusiak J, Van den Brink PJ, Grimm V. 2014. Merging validation and evaluation of ecological models to ‘evaludation’: A review of terminology and a practical approach. Ecol Modelling 280: 117 – 128.
dc.identifier.citedreferenceBaas J, Kooijman SALM. 2015. Sensitivity of animals to chemical compounds links to metabolic rate. Ecotoxicology 24: 657 – 663.
dc.identifier.citedreferenceBaird DJ, Van den Brink PJ. 2007. Using biological traits to predict species sensitivity to toxic substances. Ecotoxicol Environ Saf 67: 296 – 301.
dc.identifier.citedreferenceBaird DJ, Van den Brink PJ, Chariton AA, Dafforn KA, Johnston EL. 2015. New diagnostics for multiply stressed marine and freshwater ecosystems: integrating models, ecoinformatics and big data. Mar Freshwater Res 67: 391 – 392.
dc.identifier.citedreferenceBaveco JMH, Norman S, Roessink I, Galic N, Van Den Brink PJ. 2014. Comparing population recovery after insecticide exposure for four aquatic invertebrate species using models of different complexity. Environ Toxicol Chem 33: 1517 – 1528.
dc.identifier.citedreferenceKearney M, Porter W. 2009. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol Lett 12: 334 – 350.
dc.identifier.citedreferenceBeaudouin R, Goussen B, Piccini B, Augustine S, Devillers J, Brion F, Péry ARR. 2015. An individual‐based model of zebrafish population dynamics accounting for energy dynamics. PLoS ONE 10 ( 5): e012584.
dc.identifier.citedreferenceBeketov MA, Schäfer RB, Marwitz A, Paschke A, Liess M. 2008. Long‐term stream invertebrate community alterations induced by the insecticide thiacloprid: Effect concentrations and recovery dynamics. Sci Tot Environ 405: 96 – 108.
dc.identifier.citedreferenceBlack AJ, McKane AJ. 2012. Stochastic formulation of ecological models and their applications. Trends Ecol Evol 27: 337 – 345.
dc.identifier.citedreferenceBorja A, Josefson AB, Miles A, Muxika I, Osgard F, Phillips G, Germán Rodríguez J, Rygg B. 2007. An approach to the intercalibration of benthic ecological status assessment in the North Atlantic ecoregion, according to the European Water Framework Directive. Mar Pollut Bull 55: 42 – 52.
dc.identifier.citedreferenceBuchwalter DB, Cain DJ, Martin CA, Xie L, Luoma SN, Garland Jr T. 2008. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility. Proc Natl Acad Sci U S A 105: 8321 – 8326.
dc.identifier.citedreferenceBuchwalter DB, Jenkins JJ, Curtis LL. 2003. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies. Environ Toxicol Chem 22: 2806 – 2812.
dc.identifier.citedreferenceChesson P. 2000. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31: 343 – 366.
dc.identifier.citedreferenceDale AL, Lowry GV, Casman E. 2015. Stream dynamic and chemical transformation control the environmental fate of silver and zinc oxide nanoparticles in a watershed‐scale model. Environ Sci Technol 49: 7285 – 7293.
dc.identifier.citedreferenceDavies B, Biggs J, Williams P, Withfield M, Nicolet P, Seac D, Bray S, Maund S. 2008. Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric Ecosyst Environ 125: 1 – 8.
dc.identifier.citedreferenceDann AB, Hontela A. 2011. Triclosan: Environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31: 285 – 311.
dc.identifier.citedreferenceDe Hoop L, De Troch M, Hendriks AJ, De Laender F. 2013. Modeling toxic stress by atrazine in a marine consumer‐resource system. Environ Toxicol Chem 32: 1088 – 1095.
dc.identifier.citedreferenceDe Laender F, De Schamphelaere KAC, Vanrolleghem PA, Janssen CR. 2008a. Comparison of different toxic effect sub‐models in ecosystem modelling used for ecological effect assessments and water quality standard setting. Ecotoxicol Environ Saf 69: 13 – 23.
dc.identifier.citedreferenceDe Laender F, De Schamphelaere KAC, Vanrolleghem PA, Janssen CR. 2008b. Validation of an ecosystem modelling approach as a tool for ecological effect assessments. Chemosphere 71: 529 – 545.
dc.identifier.citedreferenceDe Laender F, Janssen CR. 2013. Brief Communication: The ecosystem perspective in ecotoxicology as a way forward for the ecological risk assessment of chemicals. Integr Environ Assess Manag 9: e34 – e38.
dc.identifier.citedreferenceDe Laender F, Melian CJ, Bindler R, Van den Brink PJ, Daam M, Roussel H, Juselius J, Verschuren D, Janssen CR. 2014a. The contribution of intra‐ and interspecific tolerance variability to biodiversity changes along toxicity gradients. Ecol Lett 17: 72 – 81.
dc.identifier.citedreferenceDe Laender F, Morselli M, Baveco H, Van den Brink PJ, Di Guardo A. 2015. Theoretically exploring direct and indirect chemical effects across ecological and exposure scenarios using mechanistic fate and effects modelling. Environ Int 74: 181 – 190.
dc.identifier.citedreferenceDe Laender F, Van den Brink PJ, Janssen CR, Di Guardo A. 2014b. The ChimERA project: Coupling mechanistic exposure and effect models into an integrated platform for ecological risk assessment. Env Sci Pollut Res 21: 6263 –6267.
dc.identifier.citedreferenceDe Laender F, Van Oevelen D, Middelburg J, Soetaert K. 2009. Incorporation of ecological data and associated uncertainty in bioaccumulation modelling. Environ Sci Technol 43: 2620 – 2626.
dc.identifier.citedreferenceDel Arco AI, Rico A, Van den Brink PJ. 2015. Effects of intra‐ and interspecific competition on the sensitivity of Daphnia magna populations to the fungicide carbendazim. Ecotoxicology 24: 1362 – 1371.
dc.identifier.citedreference[EEA] European Environment Agency. 2015. European freshwater ecosystem assessment: Cross‐walk between the water framework directive and habitats directive types, status and pressures. [cited 2015 October 30]. Available from: https://circabc.europa.eu/w/browse/f94f35e6‐5edc‐4426‐baf3‐0a306bb7c68a
dc.identifier.citedreferenceEscher BI, Hermens JLM. 2004. Internal exposure: Linking bioavailability to effects. Environ Sci Technol 38: 455A – 462A.
dc.identifier.citedreference[EFSA] European Food Safety Authority. 2014. Scientific opinion on good modelling practice in the context of mechanistic effect models for risk assessment of plant protection products. EFSA J 12 ( 3 ): 3589 – 3592.
dc.identifier.citedreferenceEveraert G, De Laender F, Goethals PL, Janssen CR. 2015. Relative contribution of persistent organic pollutants to marine phytoplankton biomass dynamics in the North Sea and the Kattegat. Chemosphere 134: 76 – 83.
dc.identifier.citedreferenceFinnegan CJ, van Egmond RA, Price OR, Whelan MJ. 2009. Continuous‐flow laboratory simulation of stream water quality changes downstream of an untreated wastewater discharge. Water Res 43: 1993 – 2001.
dc.identifier.citedreferenceFleeger JW, Carman KR, Nisbet RM. 2003. Indirect effects of contaminants in aquatic ecosystems. Sci Tot Environ 317: 207 – 233.
dc.identifier.citedreferenceFocks A, ter Horst M, van den Berg E, Baveco H, van den Brink PJ. 2014. Integrating chemical fate and population‐level effect models for pesticides at landscape scale: New options for risk assessment. Ecol Modelling 280: 102 – 116.
dc.identifier.citedreferenceForbes VE, Calow P, Grimm V, Hayashi TI, Jager T, Katholm A, Palmqvist A, Pastorok R, Salvito D, Sibly R, et al. 2011. Adding value to ecological risk assessment with population modeling. Hum Ecol Risk Assess 17: 287 – 299.
dc.identifier.citedreference[FOCUS] Forum for the Coordination of Pesticide Fate Models and Their Use. 2001. Surface water scenarios in the EU evaluation process under 91/414/EEC. Brussels (BE): FOCUS Working Group on Surface Water Scenarios. EC SANCO/4802/2001‐rev.1.
dc.identifier.citedreferenceGabsi F, Schäffer A, Preuss TG. 2014. Predicting the sensitivity of populations from individual exposure to chemicals: The role of ecological interactions. Environ Toxicol Chem 33: 1449 – 1457.
dc.identifier.citedreferenceGalic N, Ashauer R, Baveco H, Nyman A‐M, Barsi A, Thorbek P, Bruns E, Van den Brink PJ. 2014. Modelling the contribution of toxicokinetic and toxicodynamic processes to the recovery of Gammarus pulex populations after exposure to pesticides. Environ Toxicol Chem 33: 1476 – 1488.
dc.identifier.citedreferenceGalic N, Baveco H, Hengeveld GM, Thorbek P, Bruns E, Van den Brink PJ. 2012. Simulating population recovery of an aquatic isopod: Effects of timing of stress and landscape structure. Environ Pollut 163: 91 – 99.
dc.identifier.citedreferenceGalic N, Hommen U, Baveco HJM, van den Brink PJ. 2010. Potential application of population models in the European ecological risk assessment of chemicals II: Review of models and their potential to address environmental protection aims. Int Environ Assess Manag 6: 338 – 360.
dc.identifier.citedreferenceGergs A, Classen S, Hommen U. 2011. Identification of realistic worst case aquatic macroinvertebrate species for prospective risk assessment using the trait concept. Environ Sci Pollut Res 18: 1316 – 1323.
dc.identifier.citedreferenceGergs A, Classen S, Strauss T, Ottermanns R, Brock TCM, Ratte H‐T., Hommen U, Preuss TG. 2016. Ecological recovery potential of freshwater organisms − consequences for environmental risk assessment of chemicals. Rev Environ Contam T 236: 259 – 294.
dc.identifier.citedreferenceGrill G, Khan U, Lehner B, Nicell J, Ariwi J. 2016. Risk assesment of down‐the‐drain chemicals at large spatial scales: Model development and application to contaminants originating from urban areas in the Saint Lawrence river basin. Sci Tot Environ 541: 825 – 838.
dc.identifier.citedreferenceGunnarsson L, Jauhiainen A, Kristiansson E, Nerman O, Larsson DGJ. 2008. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol 42: 5807 – 5813.
dc.identifier.citedreferenceHartig F, Calabrese JM, Reineking B, Wiegand T, Huth A. 2011. Statistical inference for stochastic simulation models—theory and application. Ecol Lett 14: 816 – 827.
dc.identifier.citedreferenceHarwood AD, You J, Lydy MJ. 2009. Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: Toxicokinetic confirmation. Environ Toxicol Chem 28: 1051 – 1058.
dc.identifier.citedreferenceHelmes R, Huijbregts MAJ, Henderson AD, Jolliet O. 2012. Spatially explicit fate factors of freshwater phosphorous emissions at the global scale. Int J LCA 17: 646 – 654.
dc.identifier.citedreferenceHendriks AJ, Traas TP, Huijbregts MAJ. 2005. Critical body residues linked to octanol‐water partitioning, organism composition, and LC50 QSARs: Meta‐analysis and model. Environ Sci Technol 39: 3226 – 3236.
dc.identifier.citedreferenceHeugens EHW, Jager T, Creyghton R, Kraak MHS, Hendriks AJ, Van Straalen NM, Admiraal W. 2003. Temperature‐dependent effects of cadmium on Daphnia magna: Accumulation versus sensitivity. Environ Sci Technol 37: 2145 – 2151.
dc.identifier.citedreferenceHeugens EHW, Tokkie LTB, Kraak MHS, Hendriks AJ, Van Straalen NM, Admiraal W. 2006. Population growth of Daphnia magna under multiple stress conditions: Joint effects of temperature, food and cadmium. Environ Toxicol Chem 25: 1399 – 1407.
dc.identifier.citedreferenceHodges JE, Holmes CM, Vamshi R, Mao D, Price OR. 2012. Estimating chemical emissions from home and personal care products in China. Environ Pollut 165: 199 – 207.
dc.identifier.citedreferenceHollander A, Pistocchi A, Huijbregts MAJ, Ragas AMJ, Van De Meent D. 2009. Substance or space? The relative importance of substance properties and environmental characteristics in modeling the fate of chemicals in Europe. Environ Toxicol Chem 28: 44 – 51.
dc.identifier.citedreferenceHommen U, Baveco HJM, Galic N, van den Brink PJ. 2010. Potential application of population models in the European ecological risk assessment of chemicals I: Review of protection goals in EU directives and regulations. Int Environ Assess Manag 6: 325 – 337.
dc.identifier.citedreferenceHumbert S, Manneh R, Shaked S, Horvath A, Deschênes L, Jolliet O, Margni M. 2009. Assessing regional intake fractions and human damage factors in North America. Sci Tot Environ 407: 4812 – 4820.
dc.identifier.citedreferenceIbrahim L, Preuss TG, Schaeffer A, Hommen U. 2014. A contribution to the identification of representative vulnerable fish species for pesticide risk assessment in Europe—A comparison of population resilience using matrix models. Ecol Model 280: 65 – 75.
dc.identifier.citedreferenceJager T. 2013. Making sense of chemical stress. Version 1.2. [cited 2015 October 30]. Available from: http://www.debtox.info/book.php
dc.identifier.citedreferenceJolliet O, Wannaz C, Fantke P, Shaked S. 2012. Multi‐scale, multimedia modeling with Pangea − Local to global human health impacts of emissions in multiple continents. In: Proceedings of the International Conference on Ecobalance, P‐129, November 2012; Yokohama, Japan.
dc.identifier.citedreferenceKehrein N, Berlekamp J, Klasmeier J. 2015. Modeling the fate of down‐the‐drain chemicals in whole watersheds: New version of the GREAT‐ER software. Environ Mod Softw 64: 1 – 8.
dc.identifier.citedreferenceKunz PY, Galicia HF, Fent K. 2006. Comparison of in vitro and in vivo estrogenic activity of UV filters in fish. Toxicol Sci 90: 349 – 361.
dc.identifier.citedreferenceLalone CA, Villeneuve DL, Burgoon LD, Russom CL, Helgen HW, Berninger JP, Tietge JE, Severson MN, Cavallin JE, Ankley GT. 2013. Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action. Aquat Toxicol 144–145: 141 – 154.
dc.identifier.citedreferenceLehner B, Grill G. 2013. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol Process 27: 2171 – 2186.
dc.identifier.citedreferenceLidim C, van Gils J, Cousins IT. 2016. A large‐scale model for simulating the fate & transport of organic contaminants in river basins. Chemosphere 144: 803 – 810.
dc.identifier.citedreferenceLiess M, Foit K. 2010. Intraspecific competition delays recovery of population structure. Aquatic Toxicol 97: 15 – 22.
dc.identifier.citedreferenceLika K, Kearney MR, Freitas V, van der Veer HW, van der Meer J, Wijsman JWM, Pecquerie L, Kooijman SALM. 2011. The “covariation method” for estimating the parameters of the standard dynamic energy budget model I: Philosophy and approach. J Sea Res 66: 270 – 277.
dc.identifier.citedreferenceLombardo A, Franco A, Pivato A, Barausse A. 2015. Food web modelling of a river ecosystem for risk assessment of down‐the‐drain chemicals. Sci Tot Environ 508: 214 – 227.
dc.identifier.citedreferenceMartin BT, Zimmer EI, Grimm V, Jager T. 2012. Dynamic Energy Budget theory meets individual‐based modelling: A generic and accessible implementation. Method Ecol Evol 3: 445 – 449.
dc.identifier.citedreferenceMatthies M, Berding V, Beyer A. 2004. Probabilistic uncertainty analysis of the European Union System for the Evaluation of Substances multimedia regional distribution. Environ Toxicol Chem 23: 2494 – 2502.
dc.identifier.citedreferenceMorselli M, Semplice M, De Laender F, Van den Brink PJ, Di Guardo A. 2015. Importance of environmental and biomass dynamics in predicting chemical exposure in ecological risk assessment. Sci Tot Environ 526: 338 – 345.
dc.identifier.citedreferenceNair SK, Bartell SM, Brain RA. 2015. A comparative study of the modeled effects of atrazine on aquatic plant communities in midwestern streams. Environ Toxicol Chem 34: 2590 – 2602.
dc.identifier.citedreferenceNienstedt KM, Brock T, van Wensem J, Montforts M, Hart A, Aagaard A, Alix A, Boesten J, Bopp SK, Brown B, et al. 2012. Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides. Sci Tot Environ 415: 31 – 38.
dc.identifier.citedreferenceKearney M, Simpson SJ, Raubnheimer D, Helmuth B. 2010. Modelling the ecological niche from functional traits. Phil Tr B 365: 3469 – 3483.
dc.identifier.citedreferenceNyman AM, Schirmer K, Ashauer R. 2014. Importance of toxicokinetics for interspecies variation in sensitivity to chemicals. Environ Sci Technol 48: 5946 – 5954.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.