Show simple item record

The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1–xZnxFeS2 with In Situ Nanoprecipitates

dc.contributor.authorXie, Hongyao
dc.contributor.authorSu, Xianli
dc.contributor.authorZheng, Gang
dc.contributor.authorZhu, Ting
dc.contributor.authorYin, Kang
dc.contributor.authorYan, Yonggao
dc.contributor.authorUher, Ctirad
dc.contributor.authorKanatzidis, Mercouri G.
dc.contributor.authorTang, Xinfeng
dc.date.accessioned2017-04-13T20:34:34Z
dc.date.available2018-05-04T20:56:58Zen
dc.date.issued2017-02
dc.identifier.citationXie, Hongyao; Su, Xianli; Zheng, Gang; Zhu, Ting; Yin, Kang; Yan, Yonggao; Uher, Ctirad; Kanatzidis, Mercouri G.; Tang, Xinfeng (2017). "The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1–xZnxFeS2 with In Situ Nanoprecipitates." Advanced Energy Materials 7(3): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/136267
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherenvironmentally friendly
dc.subject.otherin situ nanoprecipitates
dc.subject.otherthermal resistance
dc.subject.otherthermoelectric
dc.titleThe Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1–xZnxFeS2 with In Situ Nanoprecipitates
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136267/1/aenm201601299_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136267/2/aenm201601299.pdf
dc.identifier.doi10.1002/aenm.201601299
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceT. Ikeda, E. S. Toberer, V. A. Ravi, G. J. Snyder, S. Aoyagi, E. Nishibori, M. Sakata, Scr. Mater. 2009, 60, 321.
dc.identifier.citedreferenceG. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
dc.identifier.citedreferenceH. J. Goldsmid, Introduction to Thermoelectric, Springer, Heidelberg, Germany 2010.
dc.identifier.citedreferenceC. Boekema, A. M. Krupski, M. Varasteh, K. Parvin, F. van Til, F. van der Woude, G. A. Sawatzky, J. Magn. Magn. Mater. 2004, 272–276, 559.
dc.identifier.citedreferenceK. Sato, Y. Harada, M. Taguchi, S. Shin, A. Fujimori, Phys. Status Solidi A. 2009, 206, 1096.
dc.identifier.citedreferenceT. Oguchi, K. Sato, T. Teranishi, J. Phys. Soc. Jpn. 1980, 48, 123.
dc.identifier.citedreferenceV. V. Popov, P. P. Konstantinov, Y. V. Rud’, J. Exp. Theor. Phys. 2011, 113, 683.
dc.identifier.citedreferenceR. Ang, A. U. Khan, N. Tsujii, K. Takai, R. Nakamura, T. Mori, Angew. Chem. Int. Ed. 2015, 54, 12909.
dc.identifier.citedreferenceN. Tsujii, T. Mori, Y. Isoda, J. Electron. Mater. 2014, 43, 2371.
dc.identifier.citedreferenceS. Gorsse, P. Bauer Pereira, R. Decourt, E. Sellier, Chem. Mater. 2010, 22, 988.
dc.identifier.citedreferenceS. Q. Lin, W. Li, Z. W. Chen, J. W. Shen, B. H. Ge, Y. Z. Pei, Nat. Commun. 2016, 7, 10287.
dc.identifier.citedreferenceL. D. Zhao, S. H. Lo, J. Q. He, H. Li, K. Biswas, J. Androulakis, C. I. Wu, T. P. Hogan, D. Y. Chung, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2011, 133, 20476.
dc.identifier.citedreferenceW. S. Liu, Q. Y. Zhang, Y. C. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Z. Wang, G. Chen, Z. F. Ren, Adv. Energy Mater. 2011, 1, 577.
dc.identifier.citedreferenceC. W. Nan, R. Birringer, D. R. Clarke, H. Gleiter, J. Appl. Phys. 1997, 81, 6692.
dc.identifier.citedreferenceJ. Callaway, H. C. von Baeyer, Phys. Rev. 1960, 120, 1149.
dc.identifier.citedreferenceJ. Callaway, Phys. Rev. 1959, 113, 1046.
dc.identifier.citedreferenceH. Wang, A. D. LaLonde, Y. Z. Pei, G. J. Snyder, Adv. Funct. Mater. 2013, 23, 1586.
dc.identifier.citedreferenceJ. Yang, G. P. Meisner, L. Chen, Appl. Phys. Lett. 2004, 85, 1140.
dc.identifier.citedreferenceG. A. Slack, Phys. Rev. 1957, 105, 829.
dc.identifier.citedreferenceB. Abeles, Phys. Rev. 1963, 131, 1906.
dc.identifier.citedreferenceA. G. Every, Y. Tzou, D. P. H. Hasselman, R. Raj, Acta Metall. Mater. 1992, 40, 123.
dc.identifier.citedreferenceD. P. H. Hasselman, L. F. Johnson, J. Compos. Mater. 1987, 21, 508.
dc.identifier.citedreferenceR. L. Hamilton, O. K. Crosser, Ind. Eng. Chem. Fundam. 1962, 1, 187.
dc.identifier.citedreferenceE. S. R. Gopal, Specific Heats at Low Temperatures, Plenum Press, New York, USA 1966.
dc.identifier.citedreferenceQ. Zhang, L. Cheng, W. Liu, Y. Zheng, X. L. Su, H. Chi, H. J. Liu, Y. G. Yan, X. F. Tang, C. Uher, Phys. Chem. Chem. Phys. 2014, 16, 23576.
dc.identifier.citedreferenceW. Liu, X. J. Tan, K. Yin, H. J. Liu, X. F. Tang, J. Shi, Q. J. Zhang, C. Uher, Phys. Rev. Lett. 2012, 108, 166601.
dc.identifier.citedreferenceX. L. Su, F. Fu, Y. G. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. W. Yang, H. Chi, X. F. Tang, Q. J. Zhang, C. Uher, Nat. Commun. 2014, 5, 4908.
dc.identifier.citedreferenceG. Zheng, X. L. Su, T. Liang, Q. B. Lu, Y. G. Yan, C. Uher, X. F. Tang, J. Mater. Chem. A. 2015, 3, 6603.
dc.identifier.citedreferenceT. Liang, X. L. Su, Y. G. Yan, G. Zheng, Q. Zhang, H. Chi, X. F. Tang, C. Uher, J. Mater. Chem. A. 2014, 2, 17914.
dc.identifier.citedreferenceJ. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616.
dc.identifier.citedreferenceL. E. Bell, Science 2008, 321, 1457.
dc.identifier.citedreferenceT. M. Tritt, M. A. Subramanian, MRS Bull. 2006, 31, 188.
dc.identifier.citedreferenceM. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, Adv. Mater. 2007, 19, 1043.
dc.identifier.citedreferenceY. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen, G. J. Snyder, Nature 2011, 473, 66.
dc.identifier.citedreferenceY. Z. Pei, A. F. May, G. J. Snyder, Adv. Energy Mater. 2011, 1, 291.
dc.identifier.citedreferenceJ. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science 2008, 321, 554.
dc.identifier.citedreferenceK. Biswas, J. Q. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 2012, 489, 414.
dc.identifier.citedreferenceD. Wu, L. D. Zhao, S. Q. Hao, Q. K. Jiang, F. S. Zheng, J. W. Doak, H. J. Wu, H. Chi, Y. Gelbstein, C. Uher, C. Wolverton, M. Kanatzidis, J. Q. He, J. Am. Chem. Soc. 2014, 136, 11412.
dc.identifier.citedreferenceS. Perumal, S. Roychowdhury, D. S. Negi, R. Datta, K. Biswas, Chem. Mater. 2015, 27, 7171.
dc.identifier.citedreferenceC. G. Fu, S. Q. Bai, Y. T. Liu, Y. S. Tang, L. D. Chen, X. B. Zhao, T. J. Zhu, Nat. Commun. 2015, 6, 8144.
dc.identifier.citedreferenceH. H. Xie, H. Wang, Y. Z. Pei, C. G. Fu, X. H. Liu, G. J. Snyder, X. B. Zhao, T. J. Zhu, Adv. Funct. Mater. 2013, 23, 5123.
dc.identifier.citedreferenceX. Shi, J. Yang, J. R. Salvador, M. F. Chi, J. Y. Cho, H. Wang, S. Q. Bai, J. H. Yang, W. Q. Zhang, L. D. Chen, J. Am. Chem. Soc. 2011, 133, 7837.
dc.identifier.citedreferenceY. T. Qiu, L. L. Xi, X. Shi, P. F. Qiu, W. Q. Zhang, L. D. Chen, J. R. Salvador, J. Y. Cho, J. H. Yang, Y. C. Chien, S. W. Chen, Y. L. Tang, G. J. Snyder, Adv. Funct. Mater. 2013, 23, 3194.
dc.identifier.citedreferenceL. D. Zhao, S. H. Lo, Y. S. Zhang, H. Sun, G. J. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373.
dc.identifier.citedreferenceL. D. Zhao, G. J. Tan, S. Q. Hao, J. Q. He, Y. L. Pei, H. Chi, H. Wang, S. K. Gong, H. B. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science 2015, 351, 141.
dc.identifier.citedreferenceB. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen, Z. F. Ren, Science 2008, 320, 634.
dc.identifier.citedreferenceW. J. Xie, J. He, H. J. Kang, X. F. Tang, S. Zhu, M. Laver, S. Y. Wang, J. R. D. Copley, C. M. Brown, Q. J. Zhang, T. M. Tritt, Nano Lett. 2010, 10, 3283.
dc.identifier.citedreferenceY. Zheng, Q. Zhang, X. L. Su, H. Y. Xie, S. C. Shu, T. L. Chen, G. J. Tan, Y. G. Yan, X. F. Tang, C. Uher, G. J. Snyder, Adv. Energy Mater. 2014, 5, 1401391.
dc.identifier.citedreferenceX. Y. Shi, F. Q. Huang, M. L. Liu, L. D. Chen, Appl. Phys. Lett. 2009, 94, 122103.
dc.identifier.citedreferenceF. J. Fan, B. Yu, Y. X. Wang, Y. L. Zhu, X. J. Liu, S. H. Yu, Z. F. Ren, J. Am. Chem. Soc. 2011, 133, 15910.
dc.identifier.citedreferenceJ. Fan, W. Schnelle, I. Antonyshyn, I. Veremchuk, W. Carrillo‐Cabrera, X. Shi, Y. Grin, L. D. Chen, Dalton Trans. 2014, 43, 16788.
dc.identifier.citedreferenceT. R. Wei, H. Wang, Z. M. Gibbs, C. F. Wu, G. J. Snyder, J. F. Li, J. Mater. Chem. A. 2014, 2, 13527.
dc.identifier.citedreferenceL. Xi, Y. B. Zhang, X. Y. Shi, J. Yang, X. Shi, L. D. Chen, W. Zhang, J. H. Yang, D. J. Singh, Phys. Rev. B. 2012, 86, 155201.
dc.identifier.citedreferenceE. J. Skoug, J. D. Cain, D. T. Morelli, Appl. Phys. Lett. 2011, 98, 261911.
dc.identifier.citedreferenceJ. H. Li, Q. Tan, J. F. Li, J. Alloy Compd. 2013, 551, 143.
dc.identifier.citedreferenceN. Tsujii, T. Mori, Appl. Phys. Express. 2013, 6, 043001.
dc.identifier.citedreferenceD. X. Liang, R. S. Ma, S. H. Jiao, G. S. Pang, S. H. Feng, Nanoscale 2012, 4, 6265.
dc.identifier.citedreferenceY. L. Li, T. S. Zhang, Y. T. Qin, T. Day, G. Jeffrey Snyder, X. Shi, L. D. Chen, J. Appl. Phys. 2014, 116, 203705.
dc.identifier.citedreferenceD. Berthebaud, O. I. Lebedev, A. Maignan, J. Materiomics 2015, 1, 68.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.