Show simple item record

Experimental evaluation of x‐ray acoustic computed tomography for radiotherapy dosimetry applications

dc.contributor.authorHickling, Susannah
dc.contributor.authorLei, Hao
dc.contributor.authorHobson, Maritza
dc.contributor.authorLéger, Pierre
dc.contributor.authorWang, Xueding
dc.contributor.authorEl Naqa, Issam
dc.date.accessioned2017-04-13T20:34:40Z
dc.date.available2018-05-04T20:56:58Zen
dc.date.issued2017-02
dc.identifier.citationHickling, Susannah; Lei, Hao; Hobson, Maritza; Léger, Pierre ; Wang, Xueding; El Naqa, Issam (2017). "Experimental evaluation of x‐ray acoustic computed tomography for radiotherapy dosimetry applications." Medical Physics 44(2): 608-617.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/136272
dc.publisherWiley‐ VCH
dc.subject.otherradiation dosimetry
dc.subject.otherultrasonics
dc.subject.otherX‐ray acoustic computed tomography
dc.subject.otherthermoacoustics
dc.titleExperimental evaluation of x‐ray acoustic computed tomography for radiotherapy dosimetry applications
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136272/1/mp12039_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136272/2/mp12039.pdf
dc.identifier.doi10.1002/mp.12039
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceTreeby BE, Zhang EZ, Cox BT. Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Probl. 2010; 26: 115003.
dc.identifier.citedreferenceHickling S, Leger P, El Naqa I. On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator. IEEE Trans Ultrason Ferroelectr Freq Control. 2016; 63: 683 – 690.
dc.identifier.citedreferenceDiao X, Zhu J, Li W et al. Broadband detection of dynamic acoustic emission process induced by 6 MV therapeutic X‐ray beam from a clinical linear accelerator. In: IEEE Int. Ultrason. Symp. Proc. 2015: 1 – 4.
dc.identifier.citedreferenceSampaio DRT, Uliana JH, Antonio AO, Pavoni JF, Pavan TZ. X‐ray acoustic imaging for external beam radiation therapy dosimetry using a commercial ultrasound scanner. In: IEEE Int. Ultrason. Symp. Proc. 2015: 1 – 4.
dc.identifier.citedreferenceRogers DWO, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR. BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1995; 22: 503.
dc.identifier.citedreferenceWalters B, Kawrakow I, Rogers DWO. DOSXYZnrc Users Manual. Ottawa: NRC Canada; 2011.
dc.identifier.citedreferenceTreeby BE, Cox BT. k‐Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J Biomed Opt. 2010; 15: 021314.
dc.identifier.citedreferenceLow D, Harms W, Mutic S, Purdy J. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998; 25: 656 – 661.
dc.identifier.citedreferenceWeber DC, Vallet V, Molineu A et al. IMRT credentialing for prospective trials using institutional virtual phantoms: results of a joint European Organization for the research and treatment of cancer and radiological physics center project. Radiat Oncol. 2014; 9: 123.
dc.identifier.citedreferenceDing L, Deán‐Ben X.L, Lutzweiler C, Razansky D, Ntziachristos V. Image reconstruction in cross‐sectional optoacoustic tomography based on non‐negative constrained model‐based inversion. In: Proc. SPIE. 2015: 953919 – 953924.
dc.identifier.citedreferenceRoss CK, Klassen NV. Water calorimetry for radiation dosimetry. Phys Med Biol. 1996; 41: 1 – 29.
dc.identifier.citedreferenceMast TD. Empirical relationships between acoustic parameters in human soft tissues. Acoust Res Lett online. 2000; 1: 37 – 42.
dc.identifier.citedreferenceBenedict SH, Yenice KM, Followill D et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010; 37: 4078.
dc.identifier.citedreferenceKnopf A‐C, Lomax A. In vivo proton range verification: a review. Phys Med Biol. 2013; 58: R131 – R160.
dc.identifier.citedreferenceHayakawa Y, Ph D, Tada J, Arai N. Acoustic pulse generated in a patient during treatment by pulsed proton radiation beam. Radiat Oncol Investig. 1995; 3: 42 – 45.
dc.identifier.citedreferenceJones KC, Witztum A, Sehgal CM, Avery S. Proton beam characterization by proton‐induced acoustic emission: simulation studies. Phys Med Biol. 2014; 59: 6549 – 6563.
dc.identifier.citedreferenceAssmann W, Kellnberger S, Reinhardt S, et al. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy. Med Phys. 2015; 42: 567 – 574.
dc.identifier.citedreferenceParodi K, Assmann W. Ionoacoustics: a new direct method for range verification. Mod Phys Lett A. 2015; 30: 1540025.
dc.identifier.citedreferenceAhmad M, Xiang L, Yousefi S, Xing L. Detection threshold of proton‐acoustic range verification. Med Phys. 2015; 42: 5735 – 5744.
dc.identifier.citedreferenceJones KC, Vander Stappen F, Bawiec C et al. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital‐based clinical cyclotron experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital‐based clinical cyclotron. Med Phys. 2015; 42: 7090 – 7097.
dc.identifier.citedreferenceAlsanea F, Moskvin V, Stantz KM. Feasibility of RACT for 3D dose measurement and range verification in a water phantom. Med Phys. 2015; 42: 937.
dc.identifier.citedreferenceJones KC, Seghal CM, Avery S. How proton pulse characteristics influence protoacoustic determination of proton‐ beam range: simulation studies. Phys Med Biol. 2016; 61: 2213 – 2242.
dc.identifier.citedreferenceAttix FH. Introduction to Radiological Physics and Radiation Dosimetry. New York: Wiley‐ VCH; 2004.
dc.identifier.citedreferencePodgorsak EB. Radiation Oncology Physics: A Handbook for Teachers and Students. Vienna: International Atomic Energy Agency; 2005.
dc.identifier.citedreferenceIAEA. Development of procedures for in vivo dosimetry in radiotherapy. IAEA Hum Heal Reports. 2013; 8: 40.
dc.identifier.citedreferenceMijnheer B, Beddar S, Izewska J, Reft C. In vivo dosimetry in external beam radiotherapy. Med Phys. 2013; 40: 070903.
dc.identifier.citedreferenceBell AG. On the production and reproduction of sound by light. Am J Sci. 1880; 20: 305 – 324.
dc.identifier.citedreferenceWang L, ed. Photoacoustic Imaging and Spectroscopy. Boca Raton: CRC Press Taylor Francis Group; 2009.
dc.identifier.citedreferenceWang L, Hu S. Photoacoustic tomography. In vivo Imaging from organelles to organs. Science. 2012; 335: 1458 – 1462.
dc.identifier.citedreferenceYao J, Wang L. Photoacoustic tomography: fundamentals, advances and propspects. Contrast Media Mol Imaging. 2011; 6: 332 – 345.
dc.identifier.citedreferenceSachse W. Observation of X‐Ray generated ultrasound. In: IEEE Ultrason. Symp. Proc. 1983: 677 – 680.
dc.identifier.citedreferenceBowen T, Chen CX, Liew SC, Lutz WR, Nasoni RL. Observation of ultrasonic emission from edges of therapeutic x‐ray beams. Phys Med Biol. 1991; 36: 537 – 539.
dc.identifier.citedreferenceXiang L, Han B, Carpenter C, Pratx G, Kuang Y, Xing L. X‐ray acoustic computed tomography with pulsed x‐ray beam from a medical linear accelerator. Med Phys. 2013; 40: 010701.
dc.identifier.citedreferenceXiang L, Tang S, Ahmad M, Xing L. High Resolution X‐ray‐Induced Acoustic Tomography. Sci Rep. 2016; 6: 26118.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.