Show simple item record

Differences in biotic interactions across range edges have only minor effects on plant performance

dc.contributor.authorKatz, Daniel S. W.
dc.contributor.authorIbáñez, Inés
dc.date.accessioned2017-04-13T20:34:43Z
dc.date.available2018-05-15T21:02:50Zen
dc.date.issued2017-03
dc.identifier.citationKatz, Daniel S. W.; Ibáñez, Inés (2017). "Differences in biotic interactions across range edges have only minor effects on plant performance." Journal of Ecology 105(2): 321-331.
dc.identifier.issn0022-0477
dc.identifier.issn1365-2745
dc.identifier.urihttps://hdl.handle.net/2027.42/136275
dc.publisherSpringer Netherlands
dc.publisherWiley Periodicals, Inc.
dc.subject.othertemperate forest
dc.subject.otherbiotic interactions
dc.subject.otherplant–insect interactions
dc.subject.otherplant–pathogen interactions
dc.subject.otherrange expansion
dc.subject.otherspecies distributions
dc.subject.othersurvival
dc.titleDifferences in biotic interactions across range edges have only minor effects on plant performance
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136275/1/jec12675.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136275/2/jec12675_am.pdf
dc.identifier.doi10.1111/1365-2745.12675
dc.identifier.sourceJournal of Ecology
dc.identifier.citedreferencePlummer, M. ( 2003 ) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing, pp. 1 – 10. Vienna, Austria.
dc.identifier.citedreferenceReinhart, K.O., Tytgat, T., Van der Putten, W.H. & Clay, K. ( 2010 ) Virulence of soil‐borne pathogens and invasion by Prunus serotina. New Phytologist, 186, 484 – 495.
dc.identifier.citedreferenceRenwick, K.M. & Rocca, M.E. ( 2015 ) Temporal context affects the observed rate of climate‐driven range shifts in tree species. Global Ecology and Biogeography, 24, 44 – 51.
dc.identifier.citedreferenceSamis, K.E. & Eckert, C.G. ( 2009 ) Ecological correlates of fitness across the northern geographic range limit of a Pacific Coast dune plant. Ecology, 90, 3051 – 3061.
dc.identifier.citedreferenceSinclair, W. & Lyon, H. ( 2005 ) Diseases of Trees and Shrubs. Cornell University Press, Ithaca, NY, USA.
dc.identifier.citedreferenceSpiegelhalter, D.J., Best, N.G., Carlin, B.P. & van der Linde, A. ( 2002 ) Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, 64, 583 – 639.
dc.identifier.citedreferenceSpiers, J.D., Davies, F.T., He, C., Bográn, C.E., Heinz, K.M., Starman, T.W. & Chau, A. ( 2006 ) Effects of Insecticides on Gas Exchange, Vegetative and Floral Development, and Overall Quality of Gerbera. HortScience, 41, 701 – 706.
dc.identifier.citedreferenceStanton‐Geddes, J. & Anderson, C.G. ( 2011 ) Does a facultative mutualism limit species range expansion? Oecologia, 167, 149 – 155.
dc.identifier.citedreferenceSuwa, T. & Louda, S.M. ( 2012 ) Combined effects of plant competition and insect herbivory hinder invasiveness of an introduced thistle. Oecologia, 169, 467 – 476.
dc.identifier.citedreferenceSvenning, J.C., Gravel, D., Holt, R.D. et al. ( 2014 ) The influence of interspecific interactions on species range expansion rates. Ecography, 37, 1198 – 1209.
dc.identifier.citedreferenceTsai, Y.‐H.E. & Manos, P.S. ( 2010 ) Host density drives the postglacial migration of the tree parasite, Epifagus virginiana. Proceedings of the National Academy of Sciences of the United States of America, 107, 17035 – 17040.
dc.identifier.citedreferenceVan der Putten, W. ( 2003 ) Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology, 84, 2269 – 2280.
dc.identifier.citedreferenceVan der Putten, W.H., Macel, M. & Visser, M.E. ( 2010 ) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society: Biology, 365, 2025 – 2034.
dc.identifier.citedreferenceVan der Putten, W.H., Vet, L.E.M., Harvey, J.A. & Wäckers, F.L. ( 2001 ) Linking above‐ and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology & Evolution, 16, 547 – 554.
dc.identifier.citedreferenceWickham, H. ( 2009 ) ggplot2: Elegant Graphics for Data Analysis. Springer, New York, NY, USA.
dc.identifier.citedreferenceWilliams, J.W., Shuman, B.N., Webb, T., Bartlein, P.J. & Leduc, P.L. ( 2004 ) Late‐Quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecological Monographs, 74, 309 – 334.
dc.identifier.citedreferenceWisz, M.S., Pottier, J., Kissling, W.D. et al. ( 2013 ) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88, 15 – 30.
dc.identifier.citedreferenceWoodall, C.W., Oswalt, C.M., Westfall, J.A., Perry, C.H., Nelson, M.D. & Finley, A.O. ( 2009 ) An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management, 257, 1434 – 1444.
dc.identifier.citedreferenceYamazaki, M., Iwamoto, S. & Seiwa, K. ( 2009 ) Distance‐ and density‐dependent seedling mortality caused by several diseases in eight tree species co‐occurring in a temperate forest. Plant Ecology, 201, 181 – 196.
dc.identifier.citedreferenceZarnetske, P., Skelly, D. & Urban, M. ( 2012 ) Biotic multipliers of climate change. Science, 336, 1516 – 1518.
dc.identifier.citedreferenceZhu, K., Woodall, C.W. & Clark, J.S. ( 2012 ) Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biology, 18, 1042 – 1052.
dc.identifier.citedreferenceZhu, Y., Comita, L.S., Hubbell, S.P. & Ma, K. ( 2015 ) Conspecific and phylogenetic density‐dependent survival differs across life stages in a tropical forest. Journal of Ecology, 103, 957 – 966.
dc.identifier.citedreferenceZvereva, E.L. & Kozlov, M.V. ( 2012 ) Sources of variation in plant responses to belowground insect herbivory: a meta‐analysis. Oecologia, 169, 441 – 452.
dc.identifier.citedreferenceAdams, J.M. & Zhang, Y. ( 2009 ) Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. Journal of Ecology, 97, 933 – 940.
dc.identifier.citedreferenceAdams, J.M., Rehill, B., Zhang, Y. & Gower, J. ( 2008 ) A test of the latitudinal defense hypothesis: herbivory, tannins and total phenolics in four North American tree species. Ecological Research, 24, 697 – 704.
dc.identifier.citedreferenceAlexander, H.M., Price, S., Houser, R., Finch, D. & Tourtellot, M. ( 2007 ) Is there reduction in disease and pre‐dispersal seed predation at the border of a host plant’s range? Field and herbarium studies of Carex blanda. Journal of Ecology, 95, 446 – 457.
dc.identifier.citedreferenceAndersen, P. & Gill, R. ( 1982 ) Cox’s regression model for counting processes: a large sample study. Annals of Statistics, 10, 1100 – 1120.
dc.identifier.citedreferenceAndersen, K.M., Turner, B.L. & Dalling, J.W. ( 2014 ) Seedling performance trade‐offs influencing habitat filtering along a soil nutrient gradient in a tropical forest. Ecology, 95, 3399 – 3413.
dc.identifier.citedreferenceAngert, A.L. & Schemske, D.W. ( 2005 ) The evolution of species’ distributions: reciprocal transplants across the elevation ranges of Mimulus cardinalis and M. lewisii. Evolution, 59, 1671 – 1684.
dc.identifier.citedreferenceBarrett, L.G., Kniskern, J.M., Bodenhausen, N., Zhang, W. & Bergelson, J. ( 2009 ) Continua of specificity and virulence in plant host‐pathogen interactions: causes and consequences. New Phytologist, 183, 513 – 529.
dc.identifier.citedreferenceBarton, K.E. & Koricheva, J. ( 2010 ) The ontogeny of plant defense and herbivory: characterizing general patterns using meta‐analysis. The American Naturalist, 175, 481 – 493.
dc.identifier.citedreferenceBertheau, C., Brockerhoff, E.G., Roux‐Morabito, G., Lieutier, F. & Jactel, H. ( 2010 ) Novel insect‐tree associations resulting from accidental and intentional biological “invasions”: a meta‐analysis of effects on insect fitness. Ecology Letters, 13, 506 – 515.
dc.identifier.citedreferenceBoege, K., Barton, K.E. & Dirzo, R. ( 2011 ) Influence of tree ontogeny on plant‐herbivore interactions. Size and Age Related Changes in Tree Structure and Function, Tree Physiology (eds F.C. Meinzer, B. Lachenbruch & T.E. Dawson ), pp. 193 – 214. Springer Netherlands, Dordrecht, the Netherlands.
dc.identifier.citedreferenceBoisvert‐Marsh, L., Périé, C. & de Blois, S. ( 2014 ) Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere, 5, 1 – 33.
dc.identifier.citedreferenceBrändle, M., Kühn, I., Klotz, S., Belle, C. & Brandl, R. ( 2008 ) Species richness of herbivores on exotic host plants increases with time since introduction of the host. Diversity and Distributions, 14, 905 – 912.
dc.identifier.citedreferenceCairns, D.M. & Moen, J. ( 2004 ) Herbivory influences tree lines. Journal of Ecology, 92, 1019 – 1024.
dc.identifier.citedreferenceCallaway, R.M., Bedmar, E.J., Reinhart, K.O., Silvan, C.G. & Klironomos, J. ( 2011 ) Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology, 92, 1027 – 1035.
dc.identifier.citedreferenceCleavitt, N.L., Fahey, T.J. & Battles, J.J. ( 2011 ) Regeneration ecology of sugar maple ( Acer saccharum ): seedling survival in relation to nutrition, site factors, and damage by insects and pathogens. Canadian Journal of Forest Research, 41, 235 – 244.
dc.identifier.citedreferenceConnor, E.F., Faeth, S.H., Simberloff, D. & Opler, P.A. ( 1980 ) Taxonomic isolation and the accumulation of herbivorous insects: a comparison of introduced and native trees. Ecological Entomology, 5, 205 – 211.
dc.identifier.citedreferenceCoyle, D., Mattson, W., Friend, A. & Raffa, K. ( 2014 ) Effects of an invasive herbivore at the single plant scale do not extend to population‐scale seedling dynamics. Canadian Journal of Forest Research, 44, 8 – 16.
dc.identifier.citedreferenceCrimmins, S.M., Dobrowski, S.Z., Greenberg, J.A., Abatzoglou, J.T. & Mynsberge, A.R. ( 2011 ) Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science, 331, 324 – 327.
dc.identifier.citedreferenceDavis, M.B. ( 1983 ) Quaternary history of deciduous forests of eastern North America and Europe. Annals of the Missouri Botanical Garden, 70, 550 – 563.
dc.identifier.citedreferenceDesprez, J., Iannone, B.V. III, Yang, P., Oswalt, C.M. & Fei, S. ( 2014 ) Northward migration under a changing climate: a case study of blackgum ( Nyssa sylvatica ). Climatic Change, 126, 151 – 162.
dc.identifier.citedreferenceDietze, M.C. & Matthes, J.H. ( 2014 ) A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems. Ecology Letters, 17, 1418 – 1426.
dc.identifier.citedreferenceDiez, J.M., Dickie, I., Edwards, G., Hulme, P.E., Sullivan, J.J. & Duncan, R.P. ( 2010 ) Negative soil feedbacks accumulate over time for non‐native plant species. Ecology Letters, 13, 803 – 809.
dc.identifier.citedreferenceEngelkes, T., Morriën, E., Verhoeven, K.J.F., Bezemer, T.M., Biere, A., Harvey, J.A., McIntyre, L.M., Tamis, W.L.M. & van der Putten, W.H. ( 2008 ) Successful range‐expanding plants experience less above‐ground and below‐ground enemy impact. Nature, 456, 946 – 948.
dc.identifier.citedreferenceFecko, A. ( 1999 ) Environmental Fate of Bifenthrin. California Department of Pesticide Regulation, Sacramento, CA, USA.
dc.identifier.citedreferenceFerguson, S. ( 2004 ) Effects of poisoning nonindigenous slugs in a boreal forest. Canadian Journal of Forest Research, 34, 449 – 455.
dc.identifier.citedreferenceFine, P.V.A., Miller, Z.J., Mesones, I., Irazuzta, S., Appel, H.M., Stevens, M.H.H., Schultz, J.C. & Coley, P.D. ( 2006 ) The growth‐defense trade‐off and habitat specialization by plants in Amazonian forests. Ecology, 87, 150 – 162.
dc.identifier.citedreferenceFisichelli, N., Frelich, L.E. & Reich, P.B. ( 2012 ) Sapling growth responses to warmer temperatures “cooled” by browse pressure. Global Change Biology, 18, 3455 – 3463.
dc.identifier.citedreferenceFlory, S. & Clay, K. ( 2013 ) Pathogen accumulation and long‐term dynamics of plant invasions. Journal of Ecology, 101, 607 – 613.
dc.identifier.citedreferenceForister, M.L., Novotny, V., Panorska, A.K., Baje, L., Basset, Y. & Butterill, P.T. ( 2015 ) The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 112, 442 – 447.
dc.identifier.citedreferenceGelman, A. & Hill, J. ( 2007 ) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceGeman, S. & Geman, D. ( 1984 ) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721 – 741.
dc.identifier.citedreferenceGilbert, G.S., Briggs, H.M. & Magarey, R. ( 2015 ) The impact of plant enemies shows a phylogenetic signal. PLoS ONE, 10, e0123758.
dc.identifier.citedreferenceGilbert, G.S. & Webb, C.O. ( 2007 ) Phylogenetic signal in plant pathogen‐host range. Proceedings of the National Academy of Sciences of the United States of America, 104, 4979 – 4983.
dc.identifier.citedreferenceGraumlich, L.J. & Davis, M.B. ( 1993 ) Holocene variation in spatial scales of vegetation patterns in the Upper Great Lakes. Ecology, 74, 826 – 839.
dc.identifier.citedreferenceGreen, P.T., Harms, K.E. & Connell, J.H. ( 2014 ) Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 52, 18649 – 18654.
dc.identifier.citedreferencevan Grunsven, R.H.A., van der Putten, W.H., Martijn Bezemer, T., Berendse, F. & Veenendaal, E.M. ( 2010 ) Plant‐soil interactions in the expansion and native range of a poleward shifting plant species. Global Change Biology, 16, 380 – 385.
dc.identifier.citedreferenceGuisan, A. & Zimmermann, N.E. ( 2000 ) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147 – 186.
dc.identifier.citedreferenceHerberich, E., Sikorski, J. & Hothorn, T. ( 2010 ) A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS ONE, 5, 1 – 8.
dc.identifier.citedreferenceHicke, J.A., Allen, C.D., Desai, A.R., Dietze, M.C., Hall, R.J., Hogg, E.H.T., Kashian, D.M., Moore, D., Raffa, K.F., Sturrock, R.N. & Vogelmann, J. ( 2012 ) Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 18, 7 – 34.
dc.identifier.citedreferenceHickling, R., Roy, D.B., Hill, J.K., Fox, R. & Thomas, C.D. ( 2006 ) The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12, 450 – 455.
dc.identifier.citedreferenceHilleRisLambers, J., Clark, J.S. & Beckage, B. ( 2002 ) Density‐dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732 – 735.
dc.identifier.citedreferenceHilleRisLambers, J., Harsch, M.A., Ettinger, A.K., Ford, K.R. & Theobald, E.J. ( 2013 ) How will biotic interactions influence climate change‐induced range shifts? Annals of the New York Academy of Sciences, 1297, 112 – 125.
dc.identifier.citedreferenceHothorn, T., Bretz, F. & Westfall, P. ( 2008 ) Simultaneous inference in general parametric models. Biometrical Journal, 50, 346 – 363.
dc.identifier.citedreferenceIbáñez, I., Clark, J.S. & Dietze, M.C. ( 2009 ) Estimating colonization potential of migrant tree species. Global Change Biology, 15, 1173 – 1188.
dc.identifier.citedreferenceIverson, L.R. & Prasad, A.M. ( 1998 ) Predicting abundance of 80 tree species following climate change in the Eastern United States. Ecological Monographs, 68, 465 – 485.
dc.identifier.citedreferenceIverson, L.R., Prasad, A.M., Matthews, S.N. & Peters, M. ( 2008 ) Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 254, 390 – 406.
dc.identifier.citedreferenceKatz, D.S.W. ( 2016 ) The effects of invertebrate herbivores on plant population growth: a meta‐regression analysis. Oecologia, 182, 43 – 53.
dc.identifier.citedreferenceKatz, D.S.W. & Ibáñez, I. ( 2016 ) Data from: Foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies. Dryad Data Repository, http://dx.doi.org/10.5061/dryad.1b433
dc.identifier.citedreferenceKellman, M. ( 2004 ) Sugar maple ( Acer saccharum Marsh.) establishment in boreal forest: results of a transplantation experiment. Journal of Biogeography, 31, 1515 – 1522.
dc.identifier.citedreferenceLevine, J.M., Adler, P.B. & Yelenik, S.G. ( 2004 ) A meta‐analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7, 975 – 989.
dc.identifier.citedreferenceMassad, T.J. ( 2013 ) Ontogenetic differences of herbivory on woody and herbaceous plants: a meta‐analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast. Oecologia, 172, 1 – 10.
dc.identifier.citedreferenceMcCarthy‐Neumann, S. & Ibáñez, I. ( 2012 ) Tree range expansion may be enhanced by escape from negative plant‐soil feedbacks. Ecology, 93, 2637 – 2649.
dc.identifier.citedreferenceMeiners, S., Handel, S. & Pickett, S. ( 2000 ) Tree seedling establishment under insect herbivory: edge effects and inter‐annual variation. Plant Ecology, 151, 161 – 170.
dc.identifier.citedreferenceMenéndez, R., González‐Megías, A., Lewis, O.T., Shaw, M.R. & Thomas, C.D. ( 2008 ) Escape from natural enemies during climate‐driven range expansion: a case study. Ecological Entomology, 33, 413 – 421.
dc.identifier.citedreferenceMitchell, C.E., Blumenthal, D., Jarošík, V., Puckett, E.E. & Pyšek, P. ( 2010 ) Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecology Letters, 13, 1525 – 1535.
dc.identifier.citedreferenceMoorcroft, P.R., Pacala, S.W. & Lewis, M.A. ( 2006 ) Potential role of natural enemies during tree range expansions following climate change. Journal of Theoretical Biology, 241, 601 – 616.
dc.identifier.citedreferenceMorriën, E., Engelkes, T., Macel, M., Meisner, A. & Van der Putten, W.H. ( 2010 ) Climate change and invasion by intracontinental range‐expanding exotic plants: the role of biotic interactions. Annals of Botany, 105, 843 – 848.
dc.identifier.citedreferenceMurphy, H.T., Vanderwal, J. & Lovett‐Doust, J. ( 2010 ) Signatures of range expansion and erosion in eastern North American trees. Ecology Letters, 13, 1233 – 1244.
dc.identifier.citedreferenceMyers, J.A. & Kitajima, K. ( 2007 ) Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. Journal of Ecology, 95, 383 – 395.
dc.identifier.citedreferenceNess, J.H., Rollinson, E.J. & Whitney, K.D. ( 2011 ) Phylogenetic distance can predict susceptibility to attack by natural enemies. Oikos, 120, 1327 – 1334.
dc.identifier.citedreferenceParker, J.D., Burkepile, D.E. & Hay, M.E. ( 2006 ) Opposing effects of native and exotic herbivores on plant invasions. Science, 311, 1459 – 1461.
dc.identifier.citedreferenceParker, I.M., Saunders, M., Bontrager, M., Weitz, A.P., Hendricks, R., Magarey, R., Suiter, K. & Gilbert, G.S. ( 2015 ) Phylogenetic structure and host abundance drive disease pressure in communities. Nature, 520, 542 – 544.
dc.identifier.citedreferenceParmesan, C. & Yohe, G. ( 2003 ) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37 – 42.
dc.identifier.citedreferencePatot, S., Martinez, J., Allemand, R., Gandon, S., Varaldi, J. & Fleury, F. ( 2010 ) Prevalence of a virus inducing behavioural manipulation near species range border. Molecular Ecology, 19, 2995 – 3007.
dc.identifier.citedreferencePatterson, S.L., Zak, D.R., Burton, A.J., Talhelm, A.F. & Pregitzer, K.S. ( 2012 ) Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem. Journal of Applied Ecology, 49, 155 – 163.
dc.identifier.citedreferencePearse, I.S. & Hipp, A.L. ( 2009 ) Phylogenetic and trait similarity to a native species predict herbivory on non‐native oaks. Proceedings of the National Academy of Sciences of the United States of America, 106, 18097 – 18102.
dc.identifier.citedreferencePearson, R.G. & Dawson, T.P. ( 2003 ) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361 – 371.
dc.identifier.citedreferencePetit, R.J., Brewer, S., Bordács, S. et al. ( 2002 ) Identification of refugia and post‐glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management, 156, 49 – 74.
dc.identifier.citedreferencePhillips, B., Brown, G. & Shine, R. ( 2010a ) Life‐history evolution in range‐shifting populations. Ecology, 91, 1617 – 1627.
dc.identifier.citedreferencePhillips, B., Kelehear, C., Pizzatto, L., Brown, G., Barton, D. & Shine, R. ( 2010b ) Parasites and pathogens lag behind their host during periods of host range advance. Ecology, 91, 872 – 881.
dc.identifier.citedreferencePiao, T., Comita, L.S., Jin, G. & Kim, J.H. ( 2013 ) Density dependence across multiple life stages in a temperate old‐growth forest of northeast China. Oecologia, 172, 207 – 217.
dc.identifier.citedreferencePlummer, M. ( 2014 ) rjags: Bayesian Graphical Models Using MCMC. MCMC, https://cran.r-project.org/web/packages/rjags/rjags.pdf. Accessed 1 Jan 2016
dc.identifier.citedreferencePrasad, A., Iverson, L., Matthews, S., Peters, M. ( 2007 ) A Climate Change Atlas for 134 forest tree species of the Eastern United States (database). Northeastern Research Station US Forest Service, Delaware, OH. http://www.nrs.fs.fed.us/atlas/tree. Accessed 6 Jan 2014
dc.identifier.citedreferencevan der Putten, W.H. ( 2011 ) Climate change, aboveground‐belowground interactions, and species’ range shifts. Annual Review of Ecology, Evolution, and Systematics, 43, 365 – 383.
dc.identifier.citedreferenceR Core Team ( 2013 ) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org. Accessed 1 Jan 2016
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.