Show simple item record

Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: New imaging frontiers

dc.contributor.authorStrafella, Antonio P.
dc.contributor.authorBohnen, Nicolaas I.
dc.contributor.authorPerlmutter, Joel S.
dc.contributor.authorEidelberg, David
dc.contributor.authorPavese, Nicola
dc.contributor.authorEimeren, Thilo
dc.contributor.authorPiccini, Paola
dc.contributor.authorPolitis, Marios
dc.contributor.authorThobois, Stephane
dc.contributor.authorCeravolo, Roberto
dc.contributor.authorHiguchi, Makoto
dc.contributor.authorKaasinen, Valtteri
dc.contributor.authorMasellis, Mario
dc.contributor.authorPeralta, M. Cecilia
dc.contributor.authorObeso, Ignacio
dc.contributor.authorPineda‐pardo, Jose Ángel
dc.contributor.authorCilia, Roberto
dc.contributor.authorBallanger, Benedicte
dc.contributor.authorNiethammer, Martin
dc.contributor.authorStoessl, Jon A.
dc.date.accessioned2017-04-13T20:34:49Z
dc.date.available2018-05-04T20:56:58Zen
dc.date.issued2017-02
dc.identifier.citationStrafella, Antonio P.; Bohnen, Nicolaas I.; Perlmutter, Joel S.; Eidelberg, David; Pavese, Nicola; Eimeren, Thilo; Piccini, Paola; Politis, Marios; Thobois, Stephane; Ceravolo, Roberto; Higuchi, Makoto; Kaasinen, Valtteri; Masellis, Mario; Peralta, M. Cecilia; Obeso, Ignacio; Pineda‐pardo, Jose Ángel ; Cilia, Roberto; Ballanger, Benedicte; Niethammer, Martin; Stoessl, Jon A. (2017). "Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: New imaging frontiers." Movement Disorders 32(2): 181-192.
dc.identifier.issn0885-3185
dc.identifier.issn1531-8257
dc.identifier.urihttps://hdl.handle.net/2027.42/136279
dc.description.abstractMolecular imaging has proven to be a powerful tool for investigation of parkinsonian disorders. One current challenge is to identify biomarkers of early changes that may predict the clinical trajectory of parkinsonian disorders. Exciting new tracer developments hold the potential for in vivo markers of underlying pathology. Herein, we provide an overview of molecular imaging advances and how these approaches help us to understand PD and atypical parkinsonisms. © 2016 International Parkinson and Movement Disorder Society.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherFDG
dc.subject.otherParkinson’s disease
dc.subject.otheratypical parkinsonism
dc.subject.otherPET
dc.subject.otherdopamine
dc.subject.otherserotonin
dc.subject.otheracetylcholine
dc.subject.otheramyloid
dc.subject.othertau
dc.titleMolecular imaging to track Parkinson’s disease and atypical parkinsonisms: New imaging frontiers
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136279/1/mds26907_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136279/2/mds26907.pdf
dc.identifier.doi10.1002/mds.26907
dc.identifier.sourceMovement Disorders
dc.identifier.citedreferenceMaillet A, Krack P, Lhommee E, et al. The prominent role of serotonergic degeneration in apathy, anxiety and depression in de novo Parkinson’s disease. Brain 2016; 139 ( Pt 9 ): 2486 â 2502.
dc.identifier.citedreferenceBallanger B, Klinger H, Eche J, et al. Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson’s disease. Mov Disord 2012; 27: 84 â 89.
dc.identifier.citedreferencePagonabarraga J, Kulisevsky J, Strafella AP, Krack P. Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol 2015; 14: 518 â 531.
dc.identifier.citedreferenceThobois S, Ardouin C, Lhommee E, et al. Nonâ motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain 2010; 133 ( Pt 4 ): 1111 â 1127.
dc.identifier.citedreferenceRemy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005; 128 ( Pt 6 ): 1314 â 1322.
dc.identifier.citedreferenceBrown CA, Campbell MC, Karimi M, et al. Dopamine pathway loss in nucleus accumbens and ventral tegmental area predicts apathetic behavior in MPTPâ lesioned monkeys. Exp Neurol 2012; 236: 190 â 197.
dc.identifier.citedreferenceTian L, Xia Y, Flores HP, Campbell MC, Moerlein SM, Perlmutter JS. Neuroimaging analysis of the dopamine basis for apathetic behaviors in an MPTPâ lesioned primate model. PLoS One 2015; 10: e0132064.
dc.identifier.citedreferenceWeintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a crossâ sectional study of 3090 patients. Arch Neurol 2010; 67: 589 â 595.
dc.identifier.citedreferenceSteeves TD, Miyasaki J, Zurowski M, et al. Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 2009; 132 ( Pt 5 ): 1376 â 1385.
dc.identifier.citedreferenceO’Sullivan SS, Wu K, Politis M, et al. Cueâ induced striatal dopamine release in Parkinson’s diseaseâ associated impulsiveâ compulsive behaviours. Brain 2011; 134 ( Pt 4 ): 969 â 978.
dc.identifier.citedreferenceWu K, Politis M, O’Sullivan SS, et al. Single versus multiple impulse control disorders in Parkinson’s disease: an (1)(1)Câ raclopride positron emission tomography study of reward cueâ evoked striatal dopamine release. J Neurol 2015; 262: 1504 â 1514.
dc.identifier.citedreferenceCilia R, Ko JH, Cho SS, et al. Reduced dopamine transporter density in the ventral striatum of patients with Parkinson’s disease and pathological gambling. Neurobiol Dis 2010; 39: 98 â 104.
dc.identifier.citedreferencevan Eimeren T, Pellecchia G, Cilia R, et al. Drugâ induced deactivation of inhibitory networks predicts pathological gambling in PD. Neurology 2010; 75: 1711 â 1716.
dc.identifier.citedreferenceRay NJ, Miyasaki JM, Zurowski M, et al. Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson’s patients with medicationâ induced pathological gambling: A [11C] FLBâ 457 and PET study. Neurobiol Dis 2012; 48: 519 â 525.
dc.identifier.citedreferenceJoutsa J, Martikainen K, Niemelä S, Johansson J, Forsback S, Rinne JO, Kaasinen V. Increased medial orbitofrontal [18F]fluorodopa uptake in Parkinsonian impulse control disorders. Mov Disord 2012; 27: 778 â 782.
dc.identifier.citedreferenceBallanger B, van Eimeren T, Moro E, et al. Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann Neurol 2009; 66: 817 â 824.
dc.identifier.citedreferenceObeso I, Wilkinson L, Rodriguezâ Oroz MC, Obeso JA, Jahanshahi M. Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflictâ induced slowing in Parkinson’s disease. Exp Brain Res 2013; 226: 451 â 462.
dc.identifier.citedreferenceGee L, Smith H, De La Cruz P, et al. The influence of bilateral subthalamic nucleus deep brain stimulation on impulsivity and prepulse inhibition in Parkinson’s disease patients. Stereotact Funct Neurosurg 2015; 93: 265 â 270.
dc.identifier.citedreferenceAmami P, Dekker I, Piacentini S, et al. Impulse control behaviours in patients with Parkinson’s disease after subthalamic deep brain stimulation: de novo cases and 3â year followâ up. J Neurol Neurosurg Psychiatry 2015; 86: 562 â 564.
dc.identifier.citedreferenceLim SY, O’Sullivan SS, Kotschet K, et al. Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson’s disease. J Clin Neurosci 2009; 16: 1148 â 1152.
dc.identifier.citedreferenceCho SS, Aminian K, Li C, Lang AE, Houle S, Strafella AP. Fatigue in Parkinson’s disease: the contribution of cerebral metabolic changes. Hum Brain Mapp 2017; 38: 283 â 292.
dc.identifier.citedreferencePavese N, Metta V, Bose SK, Chaudhuri KR, Brooks DJ. Fatigue in Parkinson’s disease is linked to striatal and limbic serotonergic dysfunction. Brain 2010; 133: 3434 â 3443.
dc.identifier.citedreferenceBruns MB, Josephs KA. Neuropsychiatry of corticobasal degeneration and progressive supranuclear palsy. Int Rev Psychiatry 2013; 25: 197 â 209.
dc.identifier.citedreferenceCilia R, Rossi C, Frosini D, et al. Dopamine transporter SPECT imaging in corticobasal syndrome. PLoS One 2011; 6: e18301.
dc.identifier.citedreferenceLiscic RM, Srulijes K, Groger A, Maetzler W, Berg D. Differentiation of progressive supranuclear palsy: clinical, imaging and laboratory tools. Acta Neurol Scand 2013; 127: 362 â 370.
dc.identifier.citedreferenceMasellis M, Momeni P, Meschino W, et al. Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain 2006; 129 ( Pt 11 ): 3115 â 3123.
dc.identifier.citedreferenceGabryelewicz T, Masellis M, Berdynski M, et al. Intraâ familial clinical heterogeneity due to FTLDâ U with TDPâ 43 proteinopathy caused by a novel deletion in progranulin gene (PGRN). J Alzheimers Dis 2010; 22: 1123 â 1133.
dc.identifier.citedreferenceEckert T, Tang C, Ma Y, et al. Abnormal metabolic networks in atypical parkinsonism. Mov Disord 2008; 23: 727 â 733.
dc.identifier.citedreferenceNiethammer M, Tang CC, Feigin A, et al. A diseaseâ specific metabolic brain network associated with corticobasal degeneration. Brain 2014; 137: 3036 â 3046.
dc.identifier.citedreferenceTang CC, Poston KL, Eckert T, et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol 2010; 9: 149 â 158.
dc.identifier.citedreferenceTripathi M, Tang CC, Feigin A, et al. Automated differential diagnosis of early parkinsonism using metabolic brain networks: a validation study. J Nucl Med 2016; 57: 60 â 66.
dc.identifier.citedreferenceGarraux G, Phillips C, Schrouff J, et al. Multiclass classification of FDG PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syndromes. Neuroimage Clin 2013; 2: 883 â 893.
dc.identifier.citedreferenceMudali D, Teune LK, Renken RJ, Leenders KL, Roerdink JB. Classification of Parkinsonian syndromes from FDGâ PET brain data using decision trees with SSM/PCA features. Comput Math Methods Med 2015; 2015: 136921.
dc.identifier.citedreferenceGerhard A, Trenderâ Gerhard I, Turkheimer F, Quinn NP, Bhatia KP, Brooks DJ. In vivo imaging of microglial activation with [11C](R)â PK11195 PET in progressive supranuclear palsy. Mov Disord 2006; 21: 89 â 93.
dc.identifier.citedreferenceOh M, Kim JS, Kim JY, et al. Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multipleâ system atrophy. J Nucl Med 2012; 53: 399 â 406.
dc.identifier.citedreferenceXia CF, Arteaga J, Chen G, et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 2013; 9: 666 â 676.
dc.identifier.citedreferenceShoup TM, Yokell DL, Rice PA, et al. A concise radiosynthesis of the tau radiopharmaceutical, [(18) F]T807. J Labelled Comp Radiopharm 2013; 56: 736 â 740.
dc.identifier.citedreferenceMaruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 2013; 79: 1094 â 1108.
dc.identifier.citedreferenceHammes J, Bischof GN, Giehl K, et al. Elevated in vivo [18F]â AVâ 1451 uptake in a patient with progressive supranuclear palsy. Mov Disord 2016 Aug 1. doi: 10.1002/mds.26727. [Epub ahead of print]
dc.identifier.citedreferenceCoakeley S, Cho S, Koshimori Y, et al. Positron emission tomography imaging of tau pathology in progressive supranuclear palsy. J Cereb Blood Flow Metab 2016. Submitted.
dc.identifier.citedreferenceLee SE, Rabinovici GD, Mayo MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011; 70: 327 â 340.
dc.identifier.citedreferenceRespondek G, Stamelou M, Kurz C, et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord 2014; 29: 1758 â 1766.
dc.identifier.citedreferenceGjerloff T, Fedorova T, Knudsen K, et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11 Câ donepezil PET. Brain 2015; 138: 653 â 663.
dc.identifier.citedreferenceBraak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s diseaseâ related pathology. Cell Tissue Res 2004; 318: 121 â 134.
dc.identifier.citedreferenceKarimi M, Tian L, Brown CA, et al. Validation of nigrostriatal positron emission tomography measures: critical limits. Ann Neurol 2013; 73: 390 â 396.
dc.identifier.citedreferenceBrown CA, Karimi MK, Tian L, et al. Validation of midbrain positron emission tomography measures for nigrostriatal neurons in macaques. Ann Neurol 2013; 74: 602 â 610.
dc.identifier.citedreferenceKuramoto L, Cragg J, Nandhagopal R, et al. The nature of progression in Parkinson’s disease: an application of nonâ linear, multivariate, longitudinal random effects modelling. PLoS One 2013; 8: e76595.
dc.identifier.citedreferenceKordower JH, Olanow CW, Dodiya HB, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 2013; 136 ( Pt 8 ): 2419 â 2431.
dc.identifier.citedreferenceVander Borght T, Kilbourn M, Desmond T, Kuhl D, Frey K. The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur J Pharmacol 1995; 294: 577 â 583.
dc.identifier.citedreferenceTian L, Karimi M, Loftin SK, et al. No differential regulation of dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) binding in a primate model of Parkinson disease. PLoS One 2012; 7: e31439.
dc.identifier.citedreferenceDe La Fuenteâ Fernandez R, Furtado S, Guttman M, et al. VMAT2 binding is elevated in dopaâ responsive dystonia: visualizing empty vesicles by PET. Synapse 2003; 49: 20 â 28.
dc.identifier.citedreferenceSossi V, de la Fuenteâ Fernandez R, Holden JE, Schulzer M, Ruth TJ, Stoessl J. Changes of dopamine turnover in the progression of Parkinson’s disease as measured by positron emission tomography: their relation to diseaseâ compensatory mechanisms. J Cereb Blood Flow Metab 2004; 24: 869 â 876.
dc.identifier.citedreferenceSossi V, de la Fuenteâ Fernandez R, Schulzer M, Troiano AR, Ruth TJ, Stoessl AJ. Dopamine transporter relation to dopamine turnover in Parkinson’s disease: a positron emission tomography study. Ann Neurol 2007; 62: 468 â 474.
dc.identifier.citedreferenceNandhagopal R, Kuramoto L, Schulzer M, et al. Longitudinal progression of sporadic Parkinson’s disease: a multiâ tracer positron emission tomography study. Brain 2009; 132 ( Pt 11 ): 2970 â 2979.
dc.identifier.citedreferenceLee CS, Samii A, Sossi V, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 2000; 47: 493 â 503.
dc.identifier.citedreferenceTabbal SD, Tian L, Karimi M, Brown CA, Loftin SK, Perlmutter JS. Low nigrostriatal reserve for motor parkinsonism in nonhuman primates. Exp Neurol 2012; 237: 355 â 362.
dc.identifier.citedreferenceBlesa J, Juri C, Collantes M, et al. Progression of dopaminergic depletion in a model of MPTPâ induced Parkinsonism in nonâ human primates. An (18)Fâ DOPA and (11)Câ DTBZ PET study. Neurobiol Dis 2010; 38: 456 â 463.
dc.identifier.citedreferenceBlesa J, Pifl C, Sanchezâ Gonzalez MA, et al. The nigrostriatal system in the presymptomatic and symptomatic stages in the MPTP monkey model: a PET, histological and biochemical study. Neurobiol Dis 2012; 48: 79 â 91.
dc.identifier.citedreferencede la Fuenteâ Fernandez R, Schulzer M, Kuramoto L, et al. Ageâ specific progression of nigrostriatal dysfunction in Parkinson’s disease. Ann Neurol 2011; 69: 803 â 810.
dc.identifier.citedreferenceSossi V, de la Fuenteâ Fernandez R, Nandhagopal R, et al. Dopamine turnover increases in asymptomatic LRRK2 mutations carriers. Mov Disord 2010; 25: 2717 â 2723.
dc.identifier.citedreferenceMcNeill A, Wu RM, Tzen KY, et al. Dopaminergic neuronal imaging in genetic Parkinson’s disease: insights into pathogenesis. PLoS One 2013; 8: e69190.
dc.identifier.citedreferenceMartikainen MH, Paivarinta M, Hietala M, Kaasinen V. Clinical and imaging findings in Parkinson disease associated with the A53E SNCA mutation. Neurol Genet 2015; 1: e27.
dc.identifier.citedreferenceRibeiro MJ, Thobois S, Lohmann E, et al. A multitracer dopaminergic PET study of youngâ onset parkinsonian patients with and without parkin gene mutations. J Nucl Med 2009; 50: 1244 â 1250.
dc.identifier.citedreferenceKhan NL, Brooks DJ, Pavese N, et al. Progression of nigrostriatal dysfunction in a parkin kindred: an [18F]dopa PET and clinical study. Brain 2002; 125 ( Pt 10 ): 2248 â 2256.
dc.identifier.citedreferencePavese N, Khan NL, Scherfler C, et al. Nigrostriatal dysfunction in homozygous and heterozygous parkin gene carriers: an 18Fâ dopa PET progression study. Mov Disord 2009; 24: 2260 â 2266.
dc.identifier.citedreferenceAdams JR, van Netten H, Schulzer M, et al. PET in LRRK2 mutations: comparison to sporadic Parkinson’s disease and evidence for presymptomatic compensation. Brain 2005; 128 ( Pt 12 ): 2777 â 2785.
dc.identifier.citedreferenceCilia R, Tunesi S, Marotta G, et al. Survival and dementia in GBAâ associated Parkinson disease: the mutation matters. Ann Neurol 2016; 80: 662 â 673.
dc.identifier.citedreferenceLaruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 2000; 20: 423 â 451.
dc.identifier.citedreferenceWilleit M, Ginovart N, Graff A, et al. First human evidence of dâ amphetamine induced displacement of a D2/3 agonist radioligand: a [11C]â (+)â PHNO positron emission tomography study. Neuropsychopharmacology 2008; 33: 279 â 289.
dc.identifier.citedreferencePolitis M, Wu K, Loane C, et al. Staging of serotonergic dysfunction in Parkinson’s disease: an in vivo 11Câ DASB PET study. Neurobiol Dis 2010; 40: 216 â 221.
dc.identifier.citedreferencePolitis M, Wu K, Loane C, et al. Serotonin neuron loss and nonmotor symptoms continue in Parkinson’s patients treated with dopamine grafts. Sci Transl Med 2012; 4: 128ra141.
dc.identifier.citedreferencePolitis M, Wu K, Loane C, et al. Serotonergic mechanisms responsible for levodopaâ induced dyskinesias in Parkinson’s disease patients. J Clin Invest 2014; 124: 1340 â 1349.
dc.identifier.citedreferenceRoussakis AA, Politis M, Towey D, Piccini P. Serotoninâ toâ dopamine transporter ratios in Parkinson disease. Neurology 2016; 86: 1152 â 1158.
dc.identifier.citedreferencePolitis M, Wu K, Loane C, et al. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med 2010; 2: 38ra46.
dc.identifier.citedreferencePolitis M, Oertel WH, Wu K, et al. Graftâ induced dyskinesias in Parkinson’s disease: high striatal serotonin/dopamine transporter ratio. Mov Disord 2011; 26: 1997 â 2003.
dc.identifier.citedreferenceNiccolini F, Foltynie T, Reis Marques T, et al. Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson’s disease. Brain 2015; 138: 3003 â 3015.
dc.identifier.citedreferenceNiethammer M, Eidelberg D. Metabolic brain networks in translational neurology: concepts and applications. Ann Neurol 2012; 72: 635 â 647.
dc.identifier.citedreferenceHoltbernd F, Ma Y, Peng S, et al. Dopaminergic correlates of metabolic network activity in Parkinson’s disease. Hum Brain Mapp 2015; 36: 3575 â 3585.
dc.identifier.citedreferenceHuang C, Tang C, Feigin A, et al. Changes in network activity with the progression of Parkinson’s disease. Brain 2007; 130: 1834 â 1846.
dc.identifier.citedreferenceMa Y, Peng S, Spetsieris PG, Sossi V, Eidelberg D, Doudet DJ. Abnormal metabolic brain networks in a nonhuman primate model of parkinsonism. J Cereb Blood Flow Metab 2012; 32: 633 â 642.
dc.identifier.citedreferenceMa YL, Johnston TH, Peng SC, et al. Reproducibility of a parkinsonismâ related metabolic brain network in nonâ human primates: a descriptive pilot study with FDG PET. Mov Disord 2015; 30: 1283 â 1288.
dc.identifier.citedreferenceKo JH, Feigin A, Mattis PJ, et al. Network modulation following sham surgery in Parkinson’s disease. J Clin Invest 2014; 124: 3656 â 3666.
dc.identifier.citedreferenceAsanuma K, Tang C, Ma Y, et al. Network modulation in the treatment of Parkinson’s disease. Brain 2006; 129: 2667 â 2678.
dc.identifier.citedreferenceWu P, Yu H, Peng S, et al. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder. Brain 2014; 137: 3122 â 3128.
dc.identifier.citedreferenceKoshimori Y, Ko JH, Mizrahi R, et al. Imaging striatal microglial activation in patients with Parkinson’s disease. PLoS One 2015; 10: e0138721.
dc.identifier.citedreferenceMcGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLAâ DR in the: substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988; 38: 1285 â 1291.
dc.identifier.citedreferenceImamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class IIâ positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 2003; 106: 518 â 526.
dc.identifier.citedreferenceGerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C](R)â PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 2006; 21: 404 â 412.
dc.identifier.citedreferenceOuchi Y, Yagi S, Yokokura M, Sakamoto M. Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord 2009; 15 ( Suppl 3 ): S200 â S204.
dc.identifier.citedreferenceOuchi Y, Yoshikawa E, Sekine Y, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 2005; 57: 168 â 175.
dc.identifier.citedreferenceBartels AL, Willemsen AT, Doorduin J, de Vries EF, Dierckx RA, Leenders KL. [11C]â PK11195 PET: quantification of neuroinflammation and a monitor of antiâ inflammatory treatment in Parkinson’s disease? Parkinsonism Relat Disord 2010; 16: 57 â 59.
dc.identifier.citedreferenceOwen DR, Howell OW, Tang SP, et al. Two binding sites for 3 HPBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab 2010; 30: 1608 â 1618.
dc.identifier.citedreferenceSuridjan I, Pollock BG, Verhoeff NP, et al. Inâ vivo imaging of grey and white matter neuroinflammation in Alzheimer’s disease: a positron emission tomography study with a novel radioligand, â 18 Fâ â FEPPA. Mol Psychiatry 2015; 20: 1579 â 1587.
dc.identifier.citedreferenceBohnen NI, Koeppe RA, Minoshima S, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med 2011; 52: 848 â 855.
dc.identifier.citedreferenceFirbank MJ, Yarnall AJ, Lawson RA, et al. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLEâ PD study. J Neurol Neurosurg Psychiatry 2016 Oct 6. doi: 10.1136/jnnp-2016-313918. [Epub ahead of print]
dc.identifier.citedreferenceGonzalezâ Redondo R, Garciaâ Garcia D, Clavero P, et al. Grey matter hypometabolism and atrophy in Parkinsonâ ’s disease with cognitive impairment: a twoâ step process. Brain 2014; 137 ( Pt 8 ): 2356 â 2367.
dc.identifier.citedreferenceMattis PJ, Tang CC, Ma Y, Dhawan V, Eidelberg D. Network correlates of the cognitive response to levodopa in Parkinson disease. Neurology 2011; 77: 858 â 865.
dc.identifier.citedreferenceGranert O, Drzezga AE, Boecker H, et al. Metabolic topology of neurodegenerative disorders: influence of cognitive and motor deficits. J Nucl Med 2015; 56: 1916 â 1921.
dc.identifier.citedreferenceChristopher L, Duffâ Canning S, Koshimori Y, et al. Salience network and parahippocampal dopamine dysfunction in memoryâ impaired Parkinson disease. Ann Neurol 2015; 77: 269 â 280.
dc.identifier.citedreferenceChristopher L, Marras C, Duffâ Canning S, et al. Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain 2014; 137 ( Pt 2 ): 565 â 575.
dc.identifier.citedreferenceWilliamsâ Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 2007; 130 ( Pt 7 ): 1787 â 1798.
dc.identifier.citedreferenceKehagia AA, Barker RA, Robbins TW. Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis. Neurodegener Dis 2013; 11: 79 â 92.
dc.identifier.citedreferenceKlein JC, Eggers C, Kalbe E, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 2010; 74: 885 â 892.
dc.identifier.citedreferenceBohnen NI, Kaufer DI, Ivanco LS, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 2003; 60: 1745 â 1748.
dc.identifier.citedreferenceBohnen NI, Albin RL, Muller ML, et al. Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of Parkinson disease and evidence of interaction effects. JAMA Neurol 2015; 72: 194 â 200.
dc.identifier.citedreferenceCalabresi P, Picconi B, Parnetti L, Di Filippo M. A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamineâ acetylcholine synaptic balance. Lancet Neurol 2006; 5: 974 â 983.
dc.identifier.citedreferenceDelgadoâ Alvarado M, Gago B, Navalpotroâ Gomez I, Jimenezâ Urbieta H, Rodriguezâ Oroz MC. Biomarkers for dementia and mild cognitive impairment in Parkinson’s disease. Mov Disord 2016; 31: 861 â 881.
dc.identifier.citedreferencePetrou M, Bohnen NI, Muller ML, Koeppe RA, Albin RL, Frey KA. Abetaâ amyloid deposition in patients with Parkinson disease at risk for development of dementia. Neurology 2012; 79: 1161 â 1167.
dc.identifier.citedreferenceShah N, Frey KA, Muller ML, et al. Striatal and cortical βâ amyloidopathy and cognition in Parkinson’s disease. Mov Disord 2016; 31: 111 â 117.
dc.identifier.citedreferenceFoster ER, Campbell MC, Burack MA, et al. Amyloid imaging of Lewy bodyâ associated disorders. Mov Disord 2010; 25: 2516 â 2523.
dc.identifier.citedreferenceKotzbauer PT, Cairns NJ, Campbell MC, Willis AW, Racette BA, Tabbal SD, Perlmutter JS. Pathologic accumulation of alphaâ synuclein and Aβ in Parkinson disease patients with dementia. Arch Neurol 2012; 69: 1326 â 1331.
dc.identifier.citedreferenceCampbell MC, Markham J, Flores H, et al. Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases. Neurology 2013; 81: 520 â 527.
dc.identifier.citedreferenceFan Z, Aman Y, Ahmed I, et al. Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement 2015; 11: 608 â 621.e7.
dc.identifier.citedreferenceAminian KS, Strafella AP. Affective disorders in Parkinson’s disease. Curr Opin Neurol 2013; 26 ( 4 ): 339 â 344.
dc.identifier.citedreferencePondal M, Marras C, Miyasaki J, et al. Clinical features of dopamine agonist withdrawal syndrome in a movement disorders clinic. J Neurol Neurosurg Psychiatry 2013; 84: 130 â 135.
dc.identifier.citedreferenceFelicio AC, Moriyama TS, Godeiroâ Junior C, et al. Higher dopamine transporter density in Parkinson’s disease patients with depression. Psychopharmacology (Berl) 2010; 211: 27 â 31.
dc.identifier.citedreferencePolitis M, Wu K, Loane C, et al. Depressive symptoms in PD correlate with higher 5â HTT binding in raphe and limbic structures. Neurology 2010; 75: 1920 â 1927.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.