Show simple item record

1,2â Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway

dc.contributor.authorVences‐guzmán, Miguel Ángel
dc.contributor.authorPaula Goetting‐minesky, M.
dc.contributor.authorGuan, Ziqiang
dc.contributor.authorCastillo‐ramirez, Santiago
dc.contributor.authorCórdoba‐castro, Luz América
dc.contributor.authorLópez‐lara, Isabel M.
dc.contributor.authorGeiger, Otto
dc.contributor.authorSohlenkamp, Christian
dc.contributor.authorChristopher Fenno, J.
dc.identifier.citationVences‐guzmán, Miguel Ángel ; Paula Goetting‐minesky, M. ; Guan, Ziqiang; Castillo‐ramirez, Santiago ; Córdoba‐castro, Luz América ; López‐lara, Isabel M. ; Geiger, Otto; Sohlenkamp, Christian; Christopher Fenno, J. (2017). "1,2â Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway." Molecular Microbiology 103(5): 896-912.
dc.publisherWiley Periodicals, Inc.
dc.publisherCold Spring Harbor Laboratory Press
dc.title1,2â Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.description.peerreviewedPeer Reviewed
dc.identifier.sourceMolecular Microbiology
dc.identifier.citedreferenceRodríguezâ Limas, W.A., Tyo, K.E., Nielsen, J., Ramírez, O.T., and Palomares, L.A. ( 2011 ) Molecular and process design for rotavirusâ like particle production in Saccharomyces cerevisiae. Microb Cell Fact 10: 33.
dc.identifier.citedreferenceAmes, B.N., and Dubin, D.T. ( 1960 ) The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem 235: 769 â 775.
dc.identifier.citedreferencePonting, C.P., Aravind, L., Schultz, J., Bork, P., and Koonin, E.V. ( 1999 ) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289: 729 â 745.
dc.identifier.citedreferenceAltschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. ( 1990 ) Basic local alignment search tool. J Mol Biol 215: 403 â 410.
dc.identifier.citedreferenceSambrook, J., and Russell, D.W. ( 2001 ) Molecular Cloning: A Laboratory Manual ( 3rd Edition). Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press.
dc.identifier.citedreferenceSchenkein, H.A., Berry, C.R., Purkall, D., Burmeister, J.A., Brooks, C.N., and Tew, J.G. ( 2001 ) Phosphorylcholineâ dependent crossâ reactivity between dental plaque bacteria and oxidized lowâ density lipoproteins. Infect Immun 69: 6612 â 6617.
dc.identifier.citedreferenceSeshadri, R., Myers, G.S., Tettelin, H., Eisen, J.A., Heidelberg, J.F., Dodson, R.J., et al. ( 2004 ) Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci U S A 101: 5646 â 5651.
dc.identifier.citedreferenceSmibert, R.M. ( 1976 ) Cultivation, composition, and physiology of avirulent treponemes. In: The Biology of Parasitic Spirochetes. Johnson, R.C. (ed). New York: Academic Press, pp. 49 â 56.
dc.identifier.citedreferenceSoding, J. ( 2005 ) Protein homology detection by HMMâ HMM comparison. Bioinformatics 21: 951 â 960.
dc.identifier.citedreferenceSohlenkamp, C., de Rudder, K.E., Röhrs, V., Lopezâ Lara, I.M., and Geiger, O. ( 2000 ) Cloning and characterization of the gene for phosphatidylcholine synthase. J Biol Chem 275: 18919 â 18925.
dc.identifier.citedreferenceSohlenkamp, C., and Geiger, O. ( 2016 ) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40: 133 â 159.
dc.identifier.citedreferenceSohlenkamp, C., Lópezâ Lara, I.M., and Geiger, O. ( 2003 ) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42: 115 â 162.
dc.identifier.citedreferenceSolisâ Oviedo, R.L., Martínezâ Morales, F., Geiger, O., and Sohlenkamp, C. ( 2012 ) Functional and topological analysis of phosphatidylcholine synthase from Sinorhizobium meliloti. Biochim Biophys Acta 1821: 573 â 581.
dc.identifier.citedreferenceSolovyev, V., and Salamov, A. ( 2011 ) Automatic annotation of microbial genomes and metagenomic sequences. In Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies. Li. R.W. (ed). Nova Science Publishers, Happauge, NY pp. 61 â 78.
dc.identifier.citedreferenceSubramanian, G., Koonin, E.V., and Aravind, L. ( 2000 ) Comparative genome analysis of the pathogenic spirochetes Borrelia burgdorferi and Treponema pallidum. Infect Immun 68: 1633 â 1648.
dc.identifier.citedreferenceTaboada, B., Verde, C., and Merino, E. ( 2010 ) High accuracy operon prediction method based on STRING database scores. Nucleic Acids Res 38: e130.
dc.identifier.citedreferenceTamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. ( 2013 ) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725 â 2729.
dc.identifier.citedreferenceWang, X.G., Scagliotti, J.P., and Hu, L.T. ( 2004 ) Phospholipid synthesis in Borrelia burgdorferi: BB0249 and BB0721 encode functional phosphatidylcholine synthase and phosphatidylglycerolphosphate synthase proteins. Microbiology 150: 391 â 397.
dc.identifier.citedreferenceWeiser, J.N., Goldberg, J.B., Pan, N., Wilson, L., and Virji, M. ( 1998 ) The phosphorylcholine epitope undergoes phase variation on a 43â kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infect Immun 66: 4263 â 4267.
dc.identifier.citedreferenceWilliams, J.G., and McMaster, C.R. ( 1998 ) Scanning alanine mutagenesis of the CDPâ alcohol phosphotransferase motif of Saccharomyces cerevisiae cholinephosphotransferase. J Biol Chem 273: 13482 â 13487.
dc.identifier.citedreferenceWright, M.M., Howe, A.G., and Zaremberg, V. ( 2004 ) Cell membranes and apoptosis: role of cardiolipin, phosphatidylcholine, and anticancer lipid analogues. Biochem Cell Biol 82: 18 â 26.
dc.identifier.citedreferenceYoung, N.M., Foote, S.J., and Wakarchuk, W.W. ( 2013 ) Review of phosphocholine substituents on bacterial pathogen glycans: synthesis, structures and interactions with host proteins. Mol Immunol 56: 563 â 573.
dc.identifier.citedreferenceYu, Y.K., and Altschul, S.F. ( 2005 ) The construction of amino acid substitution matrices for the comparison of proteins with nonâ standard compositions. Bioinformatics 21: 902 â 911.
dc.identifier.citedreferenceZhang, J.R., Idanpaanâ Heikkila, I., Fischer, W., and Tuomanen, E.I. ( 1999 ) Pneumococcal licD2 gene is involved in phosphorylcholine metabolism. Mol Microbiol 31: 1477 â 1488.
dc.identifier.citedreferenceAktas, M., Wessel, M., Hacker, S., Klusener, S., Gleichenhagen, J., and Narberhaus, F. ( 2010 ) Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur J Cell Biol 89: 888 â 894.
dc.identifier.citedreferenceAlbelo, S.T., and Domenech, C.E. ( 1997 ) Carbons from choline present in the phospholipids of Pseudomonas aeruginosa. FEMS Microbiol Lett 156: 271 â 274.
dc.identifier.citedreferenceAnderson, M.T., and Seifert, H.S. ( 2011 ) Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen. MBio 2: e00005 â e00011.
dc.identifier.citedreferenceArondel, V., Benning, C., and Somerville, C.R. ( 1993 ) Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC from Rhodobacter sphaeroides. J Biol Chem 268: 16002 â 16008.
dc.identifier.citedreferenceBattistuzzi, F.U., Feijao, A., and Hedges, S.B. ( 2004 ) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4: 44.
dc.identifier.citedreferenceBecker, D.M., and Lundblad, V. ( 2001 ) Introduction of DNA into yeast cells. Curr Protoc Mol Biol 27:III:13.7:13.7.1â 13.7.10.
dc.identifier.citedreferenceBlanco, D.R., Champion, C.I., Dooley, A., Cox, D.L., Whitelegge, J.P., Faull, K., and Lovett, M.A. ( 2005 ) A monoclonal antibody that conveys in vitro killing and partial protection in experimental syphilis binds a phosphorylcholine surface epitope of Treponema pallidum. Infect Immun 73: 3083 â 3095.
dc.identifier.citedreferenceBligh, E.G., and Dyer, W.J. ( 1959 ) A rapid method of total lipd extraction and purification. Can J Biochem Physiol 37: 911 â 917.
dc.identifier.citedreferenceBremer, J., Figard, P.H., and Greenberg, K.M. ( 1960 ) The biosynthesis of choline and its relation to phopholipid metabolism. Biochim Biophys Acta 43: 477 â 488.
dc.identifier.citedreferenceBrett, P.J., Burtnick, M.N., Fenno, J.C., and Gherardini, F.C. ( 2008 ) Treponema denticola TroR is a Manganeseâ and Ironâ Dependent Transcriptional Repressor. Mol Microbiol 70: 396 â 409.
dc.identifier.citedreferenceCui, Z., and Houweling, M. ( 2002 ) Phosphatidylcholine and cell death. Biochim Biophys Acta 1585: 87 â 96.
dc.identifier.citedreferenceDarriba, D., Taboada, G.L., Doallo, R., and Posada, D. ( 2011 ) ProtTest 3: fast selection of bestâ fit models of protein evolution. Bioinformatics 27: 1164 â 1165.
dc.identifier.citedreferencede Rudder, K.E., Lópezâ Lara, I.M., and Geiger, O. ( 2000 ) Inactivation of the gene for phospholipid Nâ methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol 37: 763 â 772.
dc.identifier.citedreferencede Rudder, K.E., Sohlenkamp, C., and Geiger, O. ( 1999 ) Plantâ exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J Biol Chem 274: 20011 â 20016.
dc.identifier.citedreferenceDunning Hotopp, J.C. ( 2011 ) Horizontal gene transfer between bacteria and animals. Trends Genet 27: 157 â 163.
dc.identifier.citedreferenceEdgar, R.C. ( 2004 ) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792 â 1797.
dc.identifier.citedreferenceFenno, J.C. ( 2005 ) Laboratory maintenance of Treponema denticola. Curr Protoc Microbiol 00:B:12B.1:12B.1.1â 12B.1.21
dc.identifier.citedreferenceFletcher, H.M., Schenkein, H.A., Morgan, R.M., Bailey, K.A., Berry, C.R., and Macrina, F.L. ( 1995 ) Virulence of a Porphyromonas gingivalis W83 mutant defective in the prtH gene. Infect Immun 63: 1521 â 1528.
dc.identifier.citedreferenceFraser, C.M., Norris, S.J., Weinstock, G.M., White, O., Sutton, G.G., Dodson, R., et al. ( 1998 ) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281: 375 â 388.
dc.identifier.citedreferenceGeiger, O., Lópezâ Lara, I.M., and Sohlenkamp, C. ( 2013 ) Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 1831: 503 â 513.
dc.identifier.citedreferenceGibellini, F., and Smith, T.K. ( 2010 ) The Kennedy pathwayâ De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62: 414 â 428.
dc.identifier.citedreferenceGmur, R., Thurnheer, T., and Guggenheim, B. ( 1999 ) Dominant crossâ reactive antibodies generated during the response to a variety of oral bacterial species detect phosphorylcholine. J Dent Res 78: 77 â 85.
dc.identifier.citedreferenceGodovikova, V., Goettingâ Minesky, M.P., Shin, J.M., Kapila, Y.L., Rickard, A.H., and Fenno, J.C. ( 2015 ) A modified shuttle plasmid facilitates expression of a flavin mononucleotideâ based fluorescent protein in treponema denticola ATCC 35405. Appl Environ Microbiol 81: 6496 â 6504.
dc.identifier.citedreferenceGoettingâ Minesky, M.P., and Fenno, J.C. ( 2010 ) A simplified erythromycin resistance cassette for Treponema denticola mutagenesis. J Microbiol Methods 83: 66 â 68.
dc.identifier.citedreferenceGupta, R.S. ( 2016 ) Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin’s views on classification. FEMS Microbiol Rev 40: 520 â 553.
dc.identifier.citedreferenceHacker, S., Sohlenkamp, C., Aktas, M., Geiger, O., and Narberhaus, F. ( 2008 ) Multiple phospholipid Nâ methyltransferases with distinct substrate specificities are encoded in Bradyrhizobium japonicum. J Bacteriol 190: 571 â 580.
dc.identifier.citedreferenceHanada, T., Kashima, Y., Kosugi, A., Koizumi, Y., Yanagida, F., and Udaka, S. ( 2001 ) A gene encoding phosphatidylethanolamine Nâ methyltransferase from Acetobacter aceti and some properties of its disruptant. Biosci Biotechnol Biochem 65: 2741 â 2748.
dc.identifier.citedreferenceHedges, S.B., Marin, J., Suleski, M., Paymer, M., and Kumar, S. ( 2015 ) Tree of life reveals clockâ like speciation and diversification. Mol Biol Evol 32: 835 â 845.
dc.identifier.citedreferenceHjelmstad, R.H., and Bell, R.M. ( 1992 ) Cholineâ and ethanolaminephosphotransferases from Saccharomyces cerevisiae. Methods Enzymol 209: 272 â 279.
dc.identifier.citedreferenceHjelmstad, R.H., Morash, S.C., McMaster, C.R., and Bell, R.M. ( 1994 ) Chimeric enzymes. Structureâ function analysis of segments of snâ 1,2â diacylglycerol cholineâ and ethanolaminephosphotransferases. J Biol Chem 269: 20995 â 21002.
dc.identifier.citedreferenceKaiser, C., Michaelis, S., and Mitchell, A. ( 1994 ) Methods in Yeast Genetics. Plainview, NY: Cold Spring Harbor Laboratory Press.
dc.identifier.citedreferenceKaneshiro, T., and Law, J.H. ( 1964 ) Phosphatidylcholine synthesis in Agrobacterium tumefaciens I. Purification and properties of a phosphatidylethanolamine Nâ methyltransferase. J Biol Chem 239: 1705 â 1713.
dc.identifier.citedreferenceKennedy, E.P., and Weiss, S.B. ( 1956 ) The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem 222: 193 â 214.
dc.identifier.citedreferenceKent, C., Gee, P., Lee, S.Y., Bian, X., and Fenno, J.C. ( 2004 ) A CDPâ choline pathway for phosphatidylcholine biosynthesis in Treponema denticola. Mol Microbiol 51: 471 â 481.
dc.identifier.citedreferenceLi, Y., Ruby, J., and Wu, H. ( 2015 ) Kanamycin resistance cassette for genetic manipulation of Treponema denticola. Appl Environ Microbiol 81: 4329 â 4338.
dc.identifier.citedreferenceLivermore, B.P., and Johnson, R.C. ( 1974 ) Lipids of the Spirochaetales: comparison of the lipids of several members of the genera Spirochaeta, Treponema, and Leptospira. J Bacteriol 120: 1268 â 1273.
dc.identifier.citedreferenceLivermore, B.P., and Johnson, R.C. ( 1975 ) The lipids of four unusual nonâ pathogenic hostâ associated spirochetes. Can J Microbiol 21: 1877 â 1880.
dc.identifier.citedreferenceLopezâ Lara, I.M., and Geiger, O. ( 2001 ) Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. J Biotechnol 91: 211 â 221.
dc.identifier.citedreferenceLurieâ Weinberger, M.N., Gomezâ Valero, L., Merault, N., Glockner, G., Buchrieser, C., and Gophna, U. ( 2010 ) The origins of eukaryoticâ like proteins in Legionella pneumophila. Int J Med Microbiol 300: 470 â 481.
dc.identifier.citedreferenceLykidis, A. ( 2007 ) Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Prog Lipid Res 46: 171 â 199.
dc.identifier.citedreferenceLysenko, E., Richards, J.C., Cox, A.D., Stewart, A., Martin, A., Kapoor, M., and Weiser, J.N. ( 2000 ) The position of phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae affects binding and sensitivity to Câ reactive proteinâ mediated killing. Mol Microbiol 35: 234 â 245.
dc.identifier.citedreferenceMao, F., Dam, P., Chou, J., Olman, V., and Xu, Y. ( 2009 ) DOOR: a database for prokaryotic operons. Nucleic Acids Res 37: D459 â D463.
dc.identifier.citedreferenceMarchlerâ Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., et al. ( 2015 ) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43: D222 â D226. 22
dc.identifier.citedreferenceMartínezâ Morales, F., Schobert, M., Lópezâ Lara, I.M., and Geiger, O. ( 2003 ) Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 149: 3461 â 3471.
dc.identifier.citedreferenceMcMaster, C.R., and Bell, R.M. ( 1994 ) Phosphatidylcholine biosynthesis in Saccharomyces cerevisiae. Regulatory insights from studies employing null and chimeric snâ 1,2â diacylglycerol cholineâ and ethanolaminephosphotransferases. J Biol Chem 269: 28010 â 28016.
dc.identifier.citedreferenceMcMaster, C.R., Morash, S.C., and Bell, R.M. ( 1996 ) Phospholipid and cation activation of chimaeric choline/ethanolamine phosphotransferases. Biochem J 313 (Pt 3): 729 â 735.
dc.identifier.citedreferenceMcMinn, M.T., and Crawford, J.J. ( 1970 ) Recovery of anaerobic microorganisms from clinical specimens in prereduced media versus recovery by routine clinical laboratory methods. Appl Microbiol 19: 207 â 213.
dc.identifier.citedreferenceMoser, R., Aktas, M., and Narberhaus, F. ( 2014 ) Phosphatidylcholine biosynthesis in Xanthomonas campestris via a yeastâ like acylation pathway. Mol Microbiol 91: 736 â 750.
dc.identifier.citedreferencePapadopoulos, J.S., and Agarwala, R. ( 2007 ) COBALT: constraintâ based alignment tool for multiple protein sequences. Bioinformatics 23: 1073 â 1079.
dc.identifier.citedreferencePaster, B.J., Boches, S.K., Galvin, J.L., Ericson, R.E., Lau, C.N., Levanos, V.A., et al. ( 2001 ) Bacterial diversity in human subgingival plaque. J Bacteriol 183: 3770 â 3783.
dc.owningcollnameInterdisciplinary and Peer-Reviewed

Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.


If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.