Show simple item record

Genetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine‐mapped region

dc.contributor.authorAndrade López, J. M.
dc.contributor.authorLanno, S. M.
dc.contributor.authorAuerbach, J. M.
dc.contributor.authorMoskowitz, E. C.
dc.contributor.authorSligar, L. A.
dc.contributor.authorWittkopp, P. J.
dc.contributor.authorCoolon, J. D.
dc.date.accessioned2017-04-13T20:35:08Z
dc.date.available2018-05-04T20:56:58Zen
dc.date.issued2017-02
dc.identifier.citationAndrade López, J. M. ; Lanno, S. M.; Auerbach, J. M.; Moskowitz, E. C.; Sligar, L. A.; Wittkopp, P. J.; Coolon, J. D. (2017). "Genetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine‐mapped region." Molecular Ecology 26(4): 1148-1160.
dc.identifier.issn0962-1083
dc.identifier.issn1365-294X
dc.identifier.urihttps://hdl.handle.net/2027.42/136293
dc.description.abstractDrosophila sechellia is a species of fruit fly endemic to the Seychelles islands. Unlike its generalist sister species, D. sechellia has evolved to be a specialist on the host plant Morinda citrifolia. This specialization is interesting because the plant’s fruit contains secondary defence compounds, primarily octanoic acid (OA), that are lethal to most other Drosophilids. Although ecological and behavioural adaptations to this toxic fruit are known, the genetic basis for evolutionary changes in OA resistance is not. Prior work showed that a genomic region on chromosome 3R containing 18 genes has the greatest contribution to differences in OA resistance between D. sechellia and D. simulans. To determine which gene(s) in this region might be involved in the evolutionary change in OA resistance, we knocked down expression of each gene in this region in D. melanogaster with RNA interference (RNAi) (i) ubiquitously throughout development, (ii) during only the adult stage and (iii) within specific tissues. We identified three neighbouring genes in the Osiris family, Osiris 6 (Osi6), Osi7 and Osi8, that led to decreased OA resistance when ubiquitously knocked down. Tissue‐specific RNAi, however, showed that decreasing expression of Osi6 and Osi7 specifically in the fat body and/or salivary glands increased OA resistance. Gene expression analyses of Osi6 and Osi7 revealed that while standing levels of expression are higher in D. sechellia, Osi6 expression is significantly downregulated in salivary glands in response to OA exposure, suggesting that evolved tissue‐specific environmental plasticity of Osi6 expression may be responsible for OA resistance in D. sechellia.
dc.publisherChapman and Hall
dc.publisherWiley Periodicals, Inc.
dc.subject.otherecological genetics
dc.subject.othermolecular evolution
dc.subject.otheradaptation
dc.subject.otherinsects
dc.subject.otherspecies interactions
dc.titleGenetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine‐mapped region
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136293/1/mec14001_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136293/2/mec14001.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136293/3/mec14001-sup-0001-SupInfo.pdf
dc.identifier.doi10.1111/mec.14001
dc.identifier.sourceMolecular Ecology
dc.identifier.citedreferenceMoreteau B, R’Kha S, David JR ( 1994 ) Genetics of a nonoptimal behavior: oviposition preference of Drosophila mauritiana for a toxic resource. Behavior Genetics, 24, 433 – 441.
dc.identifier.citedreferenceLegal L, Moulin B, Jallon JM ( 1999 ) The relation between structures and toxicity of oxygenated aliphatic compounds homologous to the insecticide octanoic acid and the chemotaxis of two species of Drosophila. Pesticide Biochemistry and Physiology, 65, 90 – 101.
dc.identifier.citedreferenceLinz J, Baschwitz A, Strutz A et al. ( 2013 ) Host plant‐driven sensory specialization in Drosophila erecta. Proceedings of the Royal Society B, 280, 20130626.
dc.identifier.citedreferenceMarshall M, Mahoney D, Rose A, Hicks JB, Broach JR ( 1987 ) Functional domains of SIR4, a gene required for position effect regulation in Saccharomyces cerevisiae. Molecular and Cellular Biology, 7, 4441 – 4452.
dc.identifier.citedreferenceMatsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y ( 2007 ) Odorant‐binding proteins OBP57d and OBP57e affect taste perception and host‐plant preference in Drosophila sechellia. PLoS Biology, 5, 0985 – 0996.
dc.identifier.citedreferenceMatute DR, Ayroles JF ( 2014 ) Hybridization occurs between Drosophila simulans and D. sechellia in the Seychelles archipelago. Journal of Evolutionary Biology, 27, 1057 – 1068.
dc.identifier.citedreferenceMatzkin LM ( 2014 ) Ecological genomics of host shifts in Drosophila mojavensis. In: Ecological Genomics: Ecology and the Evolution of Genes and Genomes, Advances in Experimental Medicine and Biology (eds Landry C. R., Aubin‐Horth N. ), pp. 233 – 247. Springer, The Netherlands.
dc.identifier.citedreferenceMatzkin LM, Watts TD, Bitler BG, Machado CA, Markow TA ( 2006 ) Functional genomics of cactus host shifts in Drosophila mojavensis. Molecular Ecology, 15, 4635 – 4643.
dc.identifier.citedreferenceMcManus CJ, Coolon JD, Eipper‐Mains J, Wittkopp PJ, Graveley BR ( 2014 ) Evolution of splicing regulatory networks in Drosophila. Genome Research, 24, 786 – 796.
dc.identifier.citedreferenceMitchell R ( 1981 ) Insect behavior, resource exploitation, and fitness. The Annual Review of Entomology, 26, 373 – 396.
dc.identifier.citedreferenceOsterwalder T, Yoon KS, White BH, Keshishian H ( 2001 ) A conditional tissue‐specific transgene expression system using inducible GAL4. Proceedings of the National Academy of Sciences of the United States of America, 98, 12596 – 12601.
dc.identifier.citedreferencePark B, Ying H, Shen X et al. ( 2010 ) Impairment of protein trafficking upon overexpression and mutation of optineurin. PLoS ONE, 5, e11547.
dc.identifier.citedreferencePrice PW, Bouton CE, Gross P et al. ( 1980 ) Interactions among three trophic levels: influence of plants on interaction between insect herbivores and natural enemies. Annual Review of Ecology and Systematics, 11, 41 – 65.
dc.identifier.citedreferenceR Development Core Team ( 2011 ) R: a language and environment for statistical computing (RDC Team, Ed,). R Foundation for Statistical Computing, Vienna, Austria, ISBN:3‐900051‐07‐0.
dc.identifier.citedreferenceRoman G, Endo K, Zong L, Davis RL ( 2001 ) P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 98, 12602 – 12607.
dc.identifier.citedreferenceShah N, Dorer DR, Moriyama EN, Christensen AC ( 2012 ) Evolution of a large, conserved, and syntenic gene family in insects. G3: Genes, Genomes, Genetics, 2, 313 – 319.
dc.identifier.citedreferenceSt. Pierre SE, Ponting L, Stefancsik R, McQuilton P ( 2014 ) flybase 102 ‐ Advanced approaches to interrogating FlyBase. Nucleic Acids Research, 42, 780 – 788.
dc.identifier.citedreferenceStrong D, Lawton J, Southwood S ( 1984 ) Insects on Plants. Community patterns and mechanisms. Harvard University Press, Blackwell, London.
dc.identifier.citedreferenceVia S ( 1990 ) Ecological genetics of herbivorous insects: the experimental study of evolution in natural and agricultural systems. Annual Review of Entomology, 35, 421 – 446.
dc.identifier.citedreferenceVia S ( 1999 ) Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution, 53, 1446 – 1457.
dc.identifier.citedreferenceWang Y, O’Malley BW, Tsai SY ( 1994 ) A regulatory system for use in gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 91, 8180 – 8184.
dc.identifier.citedreferenceWang P, Zhou Z, Hu A et al. ( 2014 ) Both decreased and increased SRPK1 levels promote cancer by interfering with PHLPP‐mediated dephosphorylation of Akt. Molecular Cell, 54, 378 – 391.
dc.identifier.citedreferenceWhiteman NK, Gloss AD ( 2016 ) Taste for Poison reevolves in fruit flies. Proceedings of the National Academy of Sciences of the United States of America, 113, 4558 – 4560.
dc.identifier.citedreferenceWhiteman NK, Gloss AD, Sackton TB et al. ( 2012 ) Genes involved in the evolution of herbivory by a leaf‐mining, Drosophilid fly. Genome Biology and Evolution, 4, 900 – 916.
dc.identifier.citedreferenceWindner SE, Doris RA, Ferguson CM et al. ( 2015 ) Tbx6, Mesp‐b and Ripply1 regulate the onset of skeletal myogenesis in zebrafish. Development, 142, 1159 – 1168.
dc.identifier.citedreferenceYassin A, Debat V, Bastide H et al. ( 2016 ) Recurrent specialization on a toxic fruit in an island Drosophila population. Proceedings of the National Academy of Sciences of the United States of America, 113, 4771 – 4776.
dc.identifier.citedreferenceLavista‐Llanos S, Svatos A, Kai M et al. ( 2014 ) Dopamine drives Drosophila sechellia adaptation to its toxic host. eLife, 3, e03785.
dc.identifier.citedreferenceAmlou M, Pla E, Moreteau B, David J ( 1997 ) Genetic analysis by interspecific crosses of the tolerance of Drosophila sechellia to major aliphatic acids of its host plant. Genetics, Selection, Evolution: GSE, 29, 511 – 522.
dc.identifier.citedreferenceAmlou M, Moreteau B, David JR ( 1998 ) Genetic analysis of Drosophila sechellia specialization: oviposition behavior toward the major aliphatic acids of its host plant. Behavior Genetics, 28, 455 – 464.
dc.identifier.citedreferenceBernays EA, Chapman RF ( 1994 ) Host‐Plant Selection by Phytophagous Insects. Chapman and Hall, New York, NY.
dc.identifier.citedreferenceBrown JB, Boley N, Eisman R et al. ( 2014 ) Diversity and dynamics of the Drosophila transcriptome. Nature, 512, 1 – 7.
dc.identifier.citedreferenceCoolon JD, Webb W, Wittkopp PJ ( 2013 ) Sex‐specific effects of cis ‐regulatory variants in Drosophila melanogaster. Genetics, 195, 1419 – 1422.
dc.identifier.citedreferenceCoolon JD, McManus CJ, Stevenson KR, Graveley BR, Wittkopp PJ ( 2014 ) Tempo and mode of regulatory evolution in Drosophila. Genome Research, 24, 797 – 808.
dc.identifier.citedreferenceCox DR ( 1972 ) Regression models and life tables. Journal of the Royal Statistical Society, Series B, 34, 187 – 220.
dc.identifier.citedreferenceDambroski HR, Linn C, Berlocher SH, Forbes AA, Roelofs W, Feder JL ( 2005 ) The genetic basis for fruit odor discrimination in Rhagoletis flies and its significance for sympatric host shifts. Evolution, 59, 1953 – 1964.
dc.identifier.citedreferenceDietzl G, Chen D, Schnorrer F et al. ( 2007 ) A genome‐wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature, 448, 151 – 156.
dc.identifier.citedreferenceDorer DR, Rudnick JA, Moriyama EN, Christensen AC ( 2003 ) A family of genes clustered at the triplo‐lethal locus of Drosophila melanogaster has an unusual evolutionary history and significant synteny with Anopheles gambiae. Genetics, 165, 613 – 621.
dc.identifier.citedreferenceEastop ( 1973 ) Deductions from present day host plants of aphids and related insects. In: Insect/Plant Relationships (ed van Emden H. F. ), pp. 157 – 178. Blackwell, Oxford.
dc.identifier.citedreferenceEhrlich PR, Murphy DD ( 1988 ) Plant chemistry and host range in insect herbivores. Ecology, 69, 908 – 909.
dc.identifier.citedreferenceFarine J‐P, Legal L, Morteteau B, Le Quere ( 1996 ) Volatile components of ripe fruits of Morinda citrofolia and their effects on Drosophila. Phytochemistry, 41, 433 – 438.
dc.identifier.citedreferenceFox J ( 2008 ) Cox proportional‐hazards regression for survival data the cox proportional‐hazards model. In: An R and S‐PLUS Companion to Applied Regression, pp. 118. Sage Publications, Thousand Oaks, CA.
dc.identifier.citedreferenceFutuyma DJ ( 1991 ) A new species of ophraella wilcox (Coleoptera, Chrysomelidae) from the Southeastern United‐States. Journal of the New York Entomological Society, 99, 643 – 653.
dc.identifier.citedreferenceGratz SJ, Cummings AM, Nguyen JN et al. ( 2013 ) Genome engineering of Drosophila with the CRISPR RNA‐guided Cas9 nuclease. Genetics, 194, 1029 – 1035.
dc.identifier.citedreferenceGraveley BR, Brooks AN, Carlson JW et al. ( 2011 ) The developmental transcriptome of Drosophila melanogaster. Nature, 471, 473 – 479.
dc.identifier.citedreferenceHertz‐Picciotto I, Rockhill B ( 1997 ) Validity and efficiency of approximation methods for tied survival times in Cox regression. Biometrics, 53, 1151 – 1156.
dc.identifier.citedreferenceHuang Y, Erezyilmaz D ( 2015 ) The Genetics of Resistance to Morinda Fruit Toxin During the Postembryonic Stages in Drosophila sechellia G3, 5, 1973 – 1981.
dc.identifier.citedreferenceHungate EA, Earley EJ, Boussy IA et al. ( 2013 ) A locus in Drosophila sechellia affecting tolerance of a host plant toxin. Genetics, 195, 1063 – 1075.
dc.identifier.citedreferenceJaenike J ( 1987 ) Genetics of oviposition‐site preference in Drosophila tripunctata. Heredity, 59 ( Pt 3 ), 363 – 369.
dc.identifier.citedreferenceJolivet P ( 1992 ) Insects and Plants, Parallel Evolution and Adaptations. Sandhill Crane Press Inc.
dc.identifier.citedreferenceJones CD ( 1998 ) The genetic basis of Drosophila sechellia resistance to a host plant toxin. Genetics, 149, 1899 – 1908.
dc.identifier.citedreferenceJones CD ( 2001 ) The genetic basis of larval resistance to a host plant toxin in Drosophila sechellia. Genetical Research, 78, 225 – 233.
dc.identifier.citedreferenceJones CD ( 2004 ) Genetics of egg production in Drosophila sechellia. Heredity, 92, 235 – 241.
dc.identifier.citedreferenceJones CD ( 2005 ) The genetics of adaptation in Drosophila sechellia. Genetica, 123, 137 – 145.
dc.identifier.citedreferenceKha SR, Capy P, David JR ( 1991 ) Host‐plant specialization in the Drosophila melanogaster species complex: a physiological, behavioral, and genetical analysis. Proceedings of the National Academy of Sciences of the United States of America, 88, 1835 – 1839.
dc.identifier.citedreferenceKrupp JJ, Levine JD ( 2010 ) Dissection of oenocytes from adult Drosophila melanogaster. Journal of Visualized Experiments, 41, 2 – 4.
dc.identifier.citedreferenceLee J, Song M, Hong S ( 2013 ) Negative regulation of the novel norpA(P24) suppressor, diehard4, in the endo‐lysosomal trafficking underlies photoreceptor cell degeneration. PLoS Genetics, 9, e1003559.
dc.identifier.citedreferenceLegal L, Chappe B, Jallon JM ( 1994 ) Molecular basis of Morinda citrifolia (L.): toxicity on Drosophila. Journal of Chemical Ecology, 20, 1931 – 1943.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.