Show simple item record

Absorbable collagen sponges loaded with recombinant bone morphogenetic protein 9 induces greater osteoblast differentiation when compared to bone morphogenetic protein 2

dc.contributor.authorFujioka‐kobayashi, Masako
dc.contributor.authorSchaller, Benoit
dc.contributor.authorSaulacic, Nikola
dc.contributor.authorPippenger, Benjamin E.
dc.contributor.authorZhang, Yufeng
dc.contributor.authorMiron, Richard J.
dc.date.accessioned2017-04-13T20:35:25Z
dc.date.available2018-05-04T20:56:58Zen
dc.date.issued2017-02
dc.identifier.citationFujioka‐kobayashi, Masako ; Schaller, Benoit; Saulacic, Nikola; Pippenger, Benjamin E.; Zhang, Yufeng; Miron, Richard J. (2017). "Absorbable collagen sponges loaded with recombinant bone morphogenetic protein 9 induces greater osteoblast differentiation when compared to bone morphogenetic protein 2." Clinical and Experimental Dental Research 3(1): 32-40.
dc.identifier.issn2057-4347
dc.identifier.issn2057-4347
dc.identifier.urihttps://hdl.handle.net/2027.42/136307
dc.description.abstractThe use of growth factors for the regeneration of soft and hard tissues has been utilized extensively in dental medicine over the past decade. Recently our group found that recombinant human bone morphogenetic protein 9 (rhBMP9) was more osteopromotive than recombinant human bone morphogenetic protein 2 (rhBMP2) when combined with a deprotenized bovine bone mineral bone grafting material. The aim of the present in vitro study was to evaluate the regenerative potential of an absorbable collagen sponge(ACS) specifically designed for extraction socket healing loaded with rhBMP9 when compared to rhBMP2. The adsorption and release kinetics of rhBMP2 and rhBMP9 were first investigated by enzymeâ linked immunosorbent assay quantification. Then, the cellular effects of stromal cell line (ST2) preosteoblasts were investigated utilizing four groups including rhBMP2 and rhBMP9 at both low(10 ng/ml) and high(100 ng/ml) concentrations loaded onto ACS. Cellular attachment(8 hours) and proliferation(1, 3, and 5 days) as well as osteoblast differentiation were investigated by realâ time polymerase chain reaction (PCR) at 3 and 14 days, alkaline phosphatase (ALP) activity at 7 days, and alizarin red staining at 14 days. ACS fully adsorbed both rhBMP2 and rhBMP9 that were slowly released up to 10 days. Although neither rhBMP2 nor rhBMP9 had any effects on cell attachment or proliferation, pronounced effects were observed on osteoblast differentiation. ALP activity was increased sevenâ fold with rhBMP2â high, whereas a marked 10â fold and 20â fold increase was observed with rhBMP9â low and high loaded to ACS, respectively. Furthermore, mRNA levels of collagen1, ALP, bone sialoprotein, and osteocalcin were all significantly higher for rhBMP9 when compared to control or rhBMP2 groups. Alizarin red staining further confirmed that rhBMP9â low and high demonstrated marked increases in mineralization potential when compared to rhBMP2â high. The results demonstrate the marked effect of rhBMP9 on osteoblast differentiation when combined with ACS in comparison to rhBMP2 at doses as much as 10 times lower. Further in vivo studies are necessary to investigate whether the regenerative potential is equally as potent.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBMP2
dc.subject.otherbone formation
dc.subject.otherBMP9
dc.subject.otherosteoinductive
dc.subject.otherguided bone regeneration
dc.subject.otherGBR
dc.titleAbsorbable collagen sponges loaded with recombinant bone morphogenetic protein 9 induces greater osteoblast differentiation when compared to bone morphogenetic protein 2
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136307/1/cre255.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136307/2/cre255_am.pdf
dc.identifier.doi10.1002/cre2.55
dc.identifier.sourceClinical and Experimental Dental Research
dc.identifier.citedreferenceMorjaria, K. R., Wilson, R., & Palmer, R. M. ( 2014 ). Bone healing after tooth extraction with or without an intervention: A systematic review of randomized controlled trials. Clinical Implant Dentistry and Related Research, 16 ( 1 ), 1 â 20. doi: 10.1111/j.1708-8208.2012.00450.x
dc.identifier.citedreferenceLin, G. H., Lim, G., Chan, H. L., Giannobile, W. V., & Wang, H. L. ( 2015 ). Recombinant human bone morphogenetic protein 2 outcomes for maxillary sinus floor augmentation: A systematic review and metaâ analysis. Clinical Oral Implants Research. doi: 10.1111/clr.12737
dc.identifier.citedreferenceMardas, N., Chadha, V., & Donos, N. ( 2010 ). Alveolar ridge preservation with guided bone regeneration and a synthetic bone substitute or a bovineâ derived xenograft: A randomized, controlled clinical trial. Clinical Oral Implants Research, 21 ( 7 ), 688 â 698. doi: 10.1111/j.1600-0501.2010.01918.x
dc.identifier.citedreferenceMardas, N., D’Aiuto, F., Mezzomo, L., Arzoumanidi, M., & Donos, N. ( 2011 ). Radiographic alveolar bone changes following ridge preservation with two different biomaterials. Clinical Oral Implants Research, 22 ( 4 ), 416 â 423. doi: 10.1111/j.1600-0501.2010.02154.x
dc.identifier.citedreferenceMiron, R. J., Hedbom, E., Saulacic, N., Zhang, Y., Sculean, A., Bosshardt, D. D., & Buser, D. ( 2011 ). Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. Journal of Dental Research, 90 ( 12 ), 1428 â 1433. doi: 10.1177/0022034511422718
dc.identifier.citedreferenceMiron, R. J., Saulacic, N., Buser, D., Iizuka, T., & Sculean, A. ( 2013 ). Osteoblast proliferation and differentiation on a barrier membrane in combination with BMP2 and TGFbeta1. Clinical Oral Investigations, 17 ( 3 ), 981 â 988. doi: 10.1007/s00784-012-0764-7
dc.identifier.citedreferenceMiron, R. J., Bosshardt, D. D., Buser, D., Zhang, Y., Tugulu, S., Gemperli, A., â ¦ Sculean, A. ( 2015 ). Comparison of the capacity of enamel matrix derivative gel and enamel matrix derivative in liquid formulation to adsorb to bone grafting materials. Journal of Periodontology, 86 ( 4 ), 578 â 587. doi: 10.1902/jop.2015.140538
dc.identifier.citedreferenceMiron, R. J., Sculean, A., Cochran, D. L., Froum, S., Zucchelli, G., Nemcovsky, C., â ¦ Bosshardt, D. D. ( 2016 ). 20 years of enamel matrix derivative: The past, the present and the future. Journal of Clinical Periodontology. doi: 10.1111/jcpe.12546
dc.identifier.citedreferenceMisch, C. M. ( 2010 ). The use of recombinant human bone morphogenetic proteinâ 2 for the repair of extraction socket defects: A technical modification and case series report. The International Journal of Oral & Maxillofacial Implants, 25 ( 6 ), 1246 â 1252.
dc.identifier.citedreferenceMoraschini, V., & Barboza, E. D. ( 2016 ). Quality assessment of systematic reviews on alveolar socket preservation. International Journal of Oral and Maxillofacial Surgery. doi: 10.1016/j.ijom.2016.03.010
dc.identifier.citedreferenceNakamura, T., Shinohara, Y., Momozaki, S., Yoshimoto, T., & Noguchi, K. ( 2013 ). Coâ stimulation with bone morphogenetic proteinâ 9 and FK506 induces remarkable osteoblastic differentiation in rat dedifferentiated fat cells. Biochemical and Biophysical Research Communications, 440 ( 2 ), 289 â 294. doi: 10.1016/j.bbrc.2013.09.073
dc.identifier.citedreferenceNakamura, T., Shirakata, Y., Shinohara, Y., Miron, R. J., Furue, K., & Noguchi, K. ( 2016 ). Osteogenic potential of recombinant human bone morphogenetic proteinâ 9/absorbable collagen sponge (rhBMPâ 9/ACS) in rat critical size calvarial defects. Clinical Oral Investigations, 1 â 7.
dc.identifier.citedreferenceRamseier, C. A., Rasperini, G., Batia, S., & Giannobile, W. V. ( 2012 ). Advanced reconstructive technologies for periodontal tissue repair. Periodontology 2000, 59 ( 1 ), 185 â 202. doi: 10.1111/j.1600-0757.2011.00432.x
dc.identifier.citedreferenceRosen, V. ( 2006 ). BMP and BMP inhibitors in bone. Annals of the New York Academy of Sciences, 1068, 19 â 25. doi: 10.1196/annals.1346.005
dc.identifier.citedreferenceSchroeder, G. D., Hsu, W. K., Kepler, C. K., Kurd, M. F., Vaccaro, A. R., Patel, A. A., & Savage, J. W. ( 2016 ). Use of recombinant human bone morphogenetic proteinâ 2 in the treatment of degenerative Spondylolisthesis. Spine (Phila Pa 1976), 41 ( 5 ), 445 â 449. doi: 10.1097/brs.0000000000001228
dc.identifier.citedreferenceSchwarz, F., Rothamel, D., Herten, M., Ferrari, D., Sager, M., & Becker, J. ( 2008 ). Lateral ridge augmentation using particulated or block bone substitutes biocoated with rhGDFâ 5 and rhBMPâ 2: An immunohistochemical study in dogs. Clinical Oral Implants Research, 19 ( 7 ), 642 â 652. doi: 10.1111/j.1600-0501.2008.01537.x
dc.identifier.citedreferenceShinohara, Y., Nakamura, T., Shirakata, Y., & Noguchi, K. ( 2016 ). Bone healing capabilities of recombinant human bone morphogenetic proteinâ 9 (rhBMPâ 9) with a chitosan or collagen carrier in rat calvarial defects. Dental Materials Journal, 35 ( 3 ), 454 â 460. doi: 10.4012/dmj.2015-242
dc.identifier.citedreferenceSong, J. J., Celeste, A. J., Kong, F. M., Jirtle, R. L., Rosen, V., & Thies, R. S. ( 1995 ). Bone morphogenetic proteinâ 9 binds to liver cells and stimulates proliferation. Endocrinology, 136 ( 10 ), 4293 â 4297. doi: 10.1210/endo.136.10.7664647
dc.identifier.citedreferenceSpagnoli, D., & Choi, C. ( 2013 ). Extraction socket grafting and buccal wall regeneration with recombinant human bone morphogenetic proteinâ 2 and acellular collagen sponge. Atlas of the Oral and Maxillofacial Surgery Clinics of North America, 21 ( 2 ), 175 â 183. doi: 10.1016/j.cxom.2013.05.003
dc.identifier.citedreferenceTan, W. L., Wong, T. L., Wong, M. C., & Lang, N. P. ( 2012 ). A systematic review of postâ extractional alveolar hard and soft tissue dimensional changes in humans. Clinical Oral Implants Research, 23 ( Suppl 5 ), 1 â 21. doi: 10.1111/j.1600-0501.2011.02375.x
dc.identifier.citedreferenceTannoury, C. A., & An, H. S. ( 2014 ). Complications with the use of bone morphogenetic protein 2 (BMPâ 2) in spine surgery. The Spine Journal, 14 ( 3 ), 552 â 559. doi: 10.1016/j.spinee.2013.08.060
dc.identifier.citedreferenceWallace, S. ( 2015 ). Histomorphometric and 3D coneâ beam computerized tomographic evaluation of socket preservation in molar extraction sites using human particulate mineralized Cancellous allograft bone with a porcine collagen xenograft barrier: A case series. The Journal of Oral Implantology, 41 ( 3 ), 291 â 297. doi: 10.1563/aaid-joi-D-14-00078
dc.identifier.citedreferenceWallace, S. C., Pikos, M. A., & Prasad, H. ( 2014 ). De novo bone regeneration in human extraction sites using recombinant human bone morphogenetic proteinâ 2/ACS: A clinical, histomorphometric, densitometric, and 3â dimensional coneâ beam computerized tomographic scan evaluation. Implant Dentistry, 23 ( 2 ), 132 â 137. doi: 10.1097/id.0000000000000035
dc.identifier.citedreferenceWang, J. H., Liu, Y. Z., Yin, L. J., Chen, L., Huang, J., Liu, Y., â ¦ He, B. C. ( 2013 ). BMP9 and COXâ 2 form an important regulatory loop in BMP9â induced osteogenic differentiation of mesenchymal stem cells. Bone, 57 ( 1 ), 311 â 321. doi: 10.1016/j.bone.2013.08.015
dc.identifier.citedreferenceYokota, M., Kobayashi, Y., Morita, J., Suzuki, H., Hashimoto, Y., Sasaki, Y., â ¦ Moriyama, K. ( 2014 ). Therapeutic effect of nanogelâ based delivery of soluble FGFR2 with S252 W mutation on craniosynostosis. PloS One, 9 ( 7 ) e101693. doi: 10.1371/journal.pone.0101693
dc.identifier.citedreferenceZhang, Y., Yang, S., Zhou, W., Fu, H., Qian, L., & Miron, R. J. ( 2015 ). Addition of a synthetically fabricated osteoinductive biphasic calcium phosphate bone graft to BMP2 improves new bone formation. Clinical Implant Dentistry and Related Research. doi: 10.1111/cid.12384
dc.identifier.citedreferenceAlonso, N., Tanikawa, D. Y., Freitas Rda, S., Canan, L. Jr., Ozawa, T. O., & Rocha, D. L. ( 2010 ). Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic proteinâ 2 in cleft lip and palate patients. Tissue Engineering. Part C, Methods, 16 ( 5 ), 1183 â 1189. doi: 10.1089/ten.TEC.2009.0824
dc.identifier.citedreferenceAraújo, M. G., & Lindhe, J. ( 2005 ). Dimensional ridge alterations following tooth extraction. An experimental study in the dog. Journal of Clinical Periodontology, 32 ( 2 ), 212 â 218.
dc.identifier.citedreferenceBalmayor, E. R., & van Griensven, M. ( 2015 ). Gene therapy for bone engineering. Frontiers in Bioengineering and Biotechnology, 3, 9. doi: 10.3389/fbioe.2015.00009
dc.identifier.citedreferenceBayat, M., Momen Heravi, F., Mahmoudi, M., & Bahrami, N. ( 2015 ). Bone reconstruction following application of bone matrix gelatin to alveolar defects: A randomized clinical trial. International Journal of Organ Transplantation Medicine, 6 ( 4 ), 176 â 181.
dc.identifier.citedreferenceBehnia, H., Khojasteh, A., Soleimani, M., Tehranchi, A., & Atashi, A. ( 2012 ). Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: A preliminary report. Journal of Cranioâ Maxilloâ Facial Surgery, 40 ( 1 ), 2 â 7. doi: 10.1016/j.jcms.2011.02.003
dc.identifier.citedreferenceBergeron, E., Senta, H., Mailloux, A., Park, H., Lord, E., & Faucheux, N. ( 2009 ). Murine preosteoblast differentiation induced by a peptide derived from bone morphogenetic proteinsâ 9. Tissue Engineering. Part A, 15 ( 11 ), 3341 â 3349. doi: 10.1089/ten.TEA.2009.0189
dc.identifier.citedreferenceBessa, P. C., Casal, M., & Reis, R. L. ( 2008a ). Bone morphogenetic proteins in tissue engineering: The road from the laboratory to the clinic, part I (basic concepts). Journal of Tissue Engineering and Regenerative Medicine, 2 ( 1 ), 1 â 13. doi: 10.1002/term.63
dc.identifier.citedreferenceBessa, P. C., Casal, M., & Reis, R. L. ( 2008b ). Bone morphogenetic proteins in tissue engineering: The road from laboratory to clinic, part II (BMP delivery). Journal of Tissue Engineering and Regenerative Medicine, 2 ( 2â 3 ), 81 â 96. doi: 10.1002/term.74
dc.identifier.citedreferenceBlunk, T., Sieminski, A. L., Appel, B., Croft, C., Courter, D. L., Chieh, J. J., â ¦ Gooch, K. J. ( 2003 ). Bone morphogenetic protein 9: A potent modulator of cartilage development in vitro. Growth Factors, 21 ( 2 ), 71 â 77.
dc.identifier.citedreferenceBrkovic, B. M., Prasad, H. S., Konandreas, G., Milan, R., Antunovic, D., Sandor, G. K., & Rohrer, M. D. ( 2008 ). Simple preservation of a maxillary extraction socket using betaâ tricalcium phosphate with type I collagen: Preliminary clinical and histomorphometric observations. Journal of the Canadian Dental Association, 74 ( 6 ), 523 â 528.
dc.identifier.citedreferenceBrkovic, B. M., Prasad, H. S., Rohrer, M. D., Konandreas, G., Agrogiannis, G., Antunovic, D., & Sandor, G. K. ( 2012 ). Betaâ tricalcium phosphate/type I collagen cones with or without a barrier membrane in human extraction socket healing: Clinical, histologic, histomorphometric, and immunohistochemical evaluation. Clinical Oral Investigations, 16 ( 2 ), 581 â 590. doi: 10.1007/s00784-011-0531-1
dc.identifier.citedreferenceCarreira, A. C., Lojudice, F. H., Halcsik, E., Navarro, R. D., Sogayar, M. C., & Granjeiro, J. M. ( 2014 ). Bone morphogenetic proteins: Facts, challenges, and future perspectives. Journal of Dental Research, 93 ( 4 ), 335 â 345. doi: 10.1177/0022034513518561
dc.identifier.citedreferenceCarreira, A. C., Zambuzzi, W. F., Rossi, M. C., Astorino Filho, R., Sogayar, M. C., & Granjeiro, J. M. ( 2015 ). Bone morphogenetic proteins: Promising molecules for bone healing, bioengineering, and regenerative medicine. Vitamins and Hormones, 99, 293 â 322. doi: 10.1016/bs.vh.2015.06.002
dc.identifier.citedreferenceChappuis, V., Engel, O., Reyes, M., Shahim, K., Nolte, L. P., & Buser, D. ( 2013 ). Ridge alterations postâ extraction in the esthetic zone: A 3D analysis with CBCT. Journal of Dental Research, 92 ( 12 Suppl ), 195s â 201s. doi: 10.1177/0022034513506713
dc.identifier.citedreferenceCheng, H., Jiang, W., Phillips, F. M., Haydon, R. C., Peng, Y., Zhou, L., â ¦ He, T. C. ( 2003 ). Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). The Journal of Bone and Joint Surgery. American Volume, 85â a ( 8 ), 1544 â 1552.
dc.identifier.citedreferenceCicciu, M., Herford, A. S., Cicciu, D., Tandon, R., & Maiorana, C. ( 2014 ). Recombinant human bone morphogenetic proteinâ 2 promote and stabilize hard and soft tissue healing for large mandibular new bone reconstruction defects. The Journal of Craniofacial Surgery, 25 ( 3 ), 860 â 862. doi: 10.1097/scs.0000000000000830
dc.identifier.citedreferenceCochran, D. L., Oh, T. J., Mills, M. P., Clem, D. S., McClain, P. K., Schallhorn, R. A., â ¦ Takemura, A. ( 2016 ). A randomized clinical trial evaluating rhâ FGFâ 2/betaâ TCP in periodontal defects. Journal of Dental Research, 95 ( 5 ), 523 â 530. doi: 10.1177/0022034516632497
dc.identifier.citedreferenceCoomes, A. M., Mealey, B. L., Huynhâ Ba, G., Barbozaâ Arguello, C., Moore, W. S., & Cochran, D. L. ( 2014 ). Buccal bone formation after flapless extraction: a randomized, controlled clinical trial comparing recombinant human bone morphogenetic protein 2/absorbable collagen carrier and collagen sponge alone. Journal of Periodontology, 85 ( 4 ), 525 â 535. doi: 10.1902/jop.2013.130207
dc.identifier.citedreferenceDe Risi, V., Clementini, M., Vittorini, G., Mannocci, A., & De Sanctis, M. ( 2015 ). Alveolar ridge preservation techniques: A systematic review and metaâ analysis of histological and histomorphometrical data. Clinical Oral Implants Research, 26 ( 1 ), 50 â 68. doi: 10.1111/clr.12288
dc.identifier.citedreferenceDe Sarkar, A., Singhvi, N., Shetty, J. N., Ramakrishna, T., Shetye, O., Islam, M., & Keerthy, H. ( 2015 ). The local effect of Alendronate with intraâ alveolar collagen sponges on post extraction alveolar ridge Resorption: A clinical trial. Journal of Maxillofac Oral Surgery, 14 ( 2 ), 344 â 356. doi: 10.1007/s12663-014-0633-9
dc.identifier.citedreferenceDraenert, F. G., Nonnenmacher, A. L., Kammerer, P. W., Goldschmitt, J., & Wagner, W. ( 2013 ). BMPâ 2 and bFGF release and in vitro effect on human osteoblasts after adsorption to bone grafts and biomaterials. Clinical Oral Implants Research, 24 ( 7 ), 750 â 757. doi: 10.1111/j.1600-0501.2012.02481.x
dc.identifier.citedreferenceFiorellini, J. P., Howell, T. H., Cochran, D., Malmquist, J., Lilly, L. C., Spagnoli, D., â ¦ Nevins, M. ( 2005 ). Randomized study evaluating recombinant human bone morphogenetic proteinâ 2 for extraction socket augmentation. Journal of Periodontology, 76 ( 4 ), 605 â 613. doi: 10.1902/jop.2005.76.4.605
dc.identifier.citedreferenceFujiokaâ Kobayashi, M., Sawada, K., Kobayashi, E., Schaller, B., Zhang, Y., & Miron, R. J. ( 2016a ). Osteogenic potential of rhBMP9 combined with a bovineâ derived natural bone mineral scaffold compared to rhBMP2. Clinical Oral Implants Research. doi: 10.1111/clr.12804
dc.identifier.citedreferenceFujiokaâ Kobayashi, M., Sawada, K., Kobayashi, E., Schaller, B., Zhang, Y., & Miron, R. J. ( 2016b ). Recombinant human bone morphogenetic protein 9 (rhBMP9) induced osteoblastic behaviour on a collagen membrane compared with rhBMP2. Journal of Periodontology, 1 â 14. doi: 10.1902/jop.2016.150561
dc.identifier.citedreferenceHerford, A. S., Tandon, R., Stevens, T. W., Stoffella, E., & Cicciu, M. ( 2013 ). Immediate distraction osteogenesis: the sandwich technique in combination with rhBMPâ 2 for anterior maxillary and mandibular defects. The Journal of Craniofacial Surgery, 24 ( 4 ), 1383 â 1387. doi: 10.1097/SCS.0b013e318292c2ce
dc.identifier.citedreferenceJambhekar, S., Kernen, F., & Bidra, A. S. ( 2015 ). Clinical and histologic outcomes of socket grafting after flapless tooth extraction: A systematic review of randomized controlled clinical trials. The Journal of Prosthetic Dentistry, 113 ( 5 ), 371 â 382. doi: 10.1016/j.prosdent.2014.12.009
dc.identifier.citedreferenceJohnson, K. ( 1963 ). A study of the dimensional changes occurring in the maxilla after tooth extraction.â part I. Normal healing. Australian Dental Journal, 8 ( 5 ), 428 â 433.
dc.identifier.citedreferenceKaigler, D., Avila, G., Wisnerâ Lynch, L., Nevins, M. L., Nevins, M., Rasperini, G., â ¦ Giannobile, W. V. ( 2011 ). Plateletâ derived growth factor applications in periodontal and periâ implant bone regeneration. Expert Opinion on Biological Therapy, 11 ( 3 ), 375 â 385. doi: 10.1517/14712598.2011.554814
dc.identifier.citedreferenceKang, Q., Sun, M. H., Cheng, H., Peng, Y., Montag, A. G., Deyrup, A. T., â ¦ He, T. C. ( 2004 ). Characterization of the distinct orthotopic boneâ forming activity of 14 BMPs using recombinant adenovirusâ mediated gene delivery. Gene Therapy, 11 ( 17 ), 1312 â 1320. doi: 10.1038/sj.gt.3302298
dc.identifier.citedreferenceLamplot, J. D., Qin, J., Nan, G., Wang, J., Liu, X., Yin, L., â ¦ He, T. C. ( 2013 ). BMP9 signaling in stem cell differentiation and osteogenesis. American Journal of Stem Cells, 2 ( 1 ), 1 â 21.
dc.identifier.citedreferenceLeblanc, E., Trensz, F., Haroun, S., Drouin, G., Bergeron, E., Penton, C. M., â ¦ Grenier, G. ( 2011 ). BMPâ 9â induced muscle heterotopic ossification requires changes to the skeletal muscle microenvironment. Journal of Bone and Mineral Research, 26 ( 6 ), 1166 â 1177. doi: 10.1002/jbmr.311
dc.identifier.citedreferenceLeknes, K. N., Yang, J., Qahash, M., Polimeni, G., Susin, C., & Wikesjo, U. M. ( 2008 ). Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic proteinâ 2: Radiographic observations. Clinical Oral Implants Research, 19 ( 10 ), 1027 â 1033. doi: 10.1111/j.1600-0501.2008.01567.x
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.