Show simple item record

Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance

dc.contributor.authorCravens, T. E.
dc.contributor.authorRahmati, A.
dc.contributor.authorFox, Jane L.
dc.contributor.authorLillis, R.
dc.contributor.authorBougher, S.
dc.contributor.authorLuhmann, J.
dc.contributor.authorSakai, S.
dc.contributor.authorDeighan, J.
dc.contributor.authorLee, Yuni
dc.contributor.authorCombi, M.
dc.contributor.authorJakosky, B.
dc.date.accessioned2017-04-13T20:35:35Z
dc.date.available2018-04-02T18:03:23Zen
dc.date.issued2017-01
dc.identifier.citationCravens, T. E.; Rahmati, A.; Fox, Jane L.; Lillis, R.; Bougher, S.; Luhmann, J.; Sakai, S.; Deighan, J.; Lee, Yuni; Combi, M.; Jakosky, B. (2017). "Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance." Journal of Geophysical Research: Space Physics 122(1): 1102-1116.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/136315
dc.description.abstractThe evolution of the atmosphere of Mars and the loss of volatiles over the lifetime of the solar system is a key topic in planetary science. An important loss process for atomic species, such as oxygen, is ionospheric photochemical escape. Dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Many theoretical hot O models have been constructed over the years, although a number of uncertainties are present in these models, particularly concerning the elastic cross sections of O atoms with CO2. Recently, the Mars Atmosphere and Volatile Evolution mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., solar wind), allowing a new assessment of this important loss process. The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to (1) study the role that variations in solar radiation or solar wind fluxes could have on escape in a transparent fashion and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. In agreement with several more elaborate numerical models, we find that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The amount of O lost due to ion transport in the topside ionosphere is found to be about 5–10% of the total.Key PointsPhotochemistry dominates oxygen escape from MarsMartian oxygen escape rate scales linearly with solar activityDependence of O escape rate from Mars on elastic cross section is described
dc.publisherWiley Periodicals, Inc.
dc.publisherPergamon Press
dc.subject.otheratmospheric loss
dc.subject.otherMars oxygen escape
dc.subject.otherionosphere of Mars
dc.subject.otherMars photochemistry
dc.titleHot oxygen escape from Mars: Simple scaling with solar EUV irradiance
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136315/1/jgra53155.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136315/2/jgra53155_am.pdf
dc.identifier.doi10.1002/2016JA023461
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceNewkirk, G., Jr. ( 1980 ), Solar variability on time scales of 10 5  years to 10 9.6  years, in The Ancient Sun, Geochim. Cosmochim. Acta Suppl., vol. 13, edited by R. O. Pepin, J. A. Eddy, and R. B. Merrill, pp. 293, Pergamon Press.
dc.identifier.citedreferenceMa, Y. J., et al. ( 2015 ), MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations, Geophys. Res. Lett., 42, 9113 – 9120, doi: 10.1002/2015GL065218.
dc.identifier.citedreferenceMahaffy, P. R., et al. ( 2015 ), The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission, Space Sci. Rev., 195, 49 – 73, doi: 10.1007/s11214-014-0091-1.
dc.identifier.citedreferenceMatta, M., P. Withers, and M. Mendillo ( 2013 ), The composition of Mars’ topside ionosphere: Effects of hydrogen, J. Geophys. Res. Space Physics, 2681, – 2693, doi: 10.1002/jgra.50104.
dc.identifier.citedreferenceMatta, M., M. Galand, L. Moore, M. Mendillo, and P. Withers ( 2014 ), Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations, Icarus, 227, 78 – 88, doi: 10.1016/j.icarus.2013.09.006.
dc.identifier.citedreferenceMcElroy, M. B. ( 1972 ), Mars: An evolving atmosphere, Science, 175, 443 – 445, doi: 10.1126/science.175.4020.443.
dc.identifier.citedreferenceNagy, A. F., and T. E. Cravens ( 1988 ), Hot oxygen atoms in the upper atmospheres of Venus and Mars, Geophys. Res. Lett., 15 ( 5 ), 433 – 435, doi: 10.1029/GL015i005p00433.
dc.identifier.citedreferenceNagy, A. F., T. E. Cravens, J. H. Yee, and A. I. Stewart ( 1981 ), Hot oxygen atoms in the upper atmosphere of Venus, Geophys. Res. Lett., 8, 629 – 632, doi: 10.1029/GL008i006p00629.
dc.identifier.citedreferenceNagy, A. F., J. Kim, and T. E. Cravens ( 1990 ), Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars, Ann. Geophys., 8, 251.
dc.identifier.citedreferenceNagy, A. F., M. W. Liemohn, J. L. Fox, and J. Kim ( 2001 ), Hot carbon densities in the exosphere of Mars, Geophys. Res. Lett., 82, 4341 – 4349.
dc.identifier.citedreferencePetrignani, A., F. Hellberg, R. D. Thomas, M. Larsson, P. C. Cosby, and W. J. van der Zande ( 2005 ), Electron energy‐dependent product state distributions in the dissociative recombination of O 2 +, J. Chem. Phys., 122 ( 23 ), 234 – 311, doi: 10.1063/1.1937388.
dc.identifier.citedreferencePeverall, R., et al. ( 2001 ), Dissociative recombination and excitation of O 2 +: Cross sections, product yields and implications for studies of ionospheric airglows, J. Chem. Phys., 114, 6679 – 6689, doi: 10.1063/1.1349079.
dc.identifier.citedreferenceRahmati, A. ( 2016 ), Oxygen exosphere of Mars: Evidence from pickup ions measured by MAVEN PhD thesis, Univ. of Kansas.
dc.identifier.citedreferenceRahmati, A., T. E. Cravens, A. F. Nagy, J. L. Fox, S. W. Bougher, R. J. Lillis, S. A. Ledvina, D. E. Larson, P. Dunn, and J. A. Croxell ( 2014 ), Pickup ion measurements by MAVEN: A diagnostic of photochemical oxygen escape from Mars, Geophys. Res. Lett., 41, 4812 – 4818, doi: 10.1002/2014GL060289.
dc.identifier.citedreferenceRahmati, A., D. E. Larson, T. E. Cravens, R. J. Lillis, P. A. Dunn, J. S. Halekas, J. E. Connerney, F. G. Eparvier, E. M. B. Thiemann, and B. M. Jakosky ( 2015 ), MAVEN insights into oxygen pickup ions at Mars, Geophys. Res. Lett., 42, 8870 – 8876, doi: 10.1002/2015GL065262.
dc.identifier.citedreferenceRahmati, A., et al. ( 2017 ), MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape, J. Geophys. Res. Space Physics, 122, doi: 10.1002/2016JA023371, in press.
dc.identifier.citedreferenceSakai, S., A. Rahmati, D. L. Mitchell, T. E. Cravens, S. W. Bougher, C. Mazelle, W. K. Peterson, F. G. Eparvier, J. M. Fontenla, and B. M. Jakosky ( 2015 ), Model insights into energetic photoelectrons measured at Mars by MAVEN, Geophys. Res. Lett., 42, 8894 – 8900, doi: 10.1002/2015GL065169.
dc.identifier.citedreferenceSakai, S., et al. ( 2016 ), Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data, J. Geophys. Res. Space Physics, 121, 7049 – 7066, doi: 10.1002/2016JA022782.
dc.identifier.citedreferenceSchunk, R. W., and A. F. Nagy ( 2009 ), Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd ed., Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceValeille, A., V. Tenishev, M. Combi, S. Bougher, and A. Nagy ( 2009a ), 3D study of Mars upper‐thermosphere/ionosphere and hot corona: (1) General description and results at equinox for solar minimum conditions, J. Geophys. Res., 114, E11005, doi: 10.1029/2009JE003388.
dc.identifier.citedreferenceValeille, A., V. Tenishev, M. Combi, S. Bougher, and A. Nagy ( 2009b ), 3D study of Mars upper‐thermosphere/ionosphere and hot corona: (2) Solar cycle, seasonal variations, and evolution over history, J. Geophys. Res., 114, E11006, doi: 10.1029/2009JE003389.
dc.identifier.citedreferenceValeille, A., M. R. Combi, V. Tenishev, S. W. Bougher, and A. F. Nagy ( 2010a ), A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions, Icarus, 206, 18 – 27, doi: 10.1016/j.icarus.2008.08.018.
dc.identifier.citedreferenceValeille, A., S. W. Bougher, V. Tenishev, M. R. Combi, and A. F. Nagy ( 2010b ), Water loss and evolution of the upper atmosphere and exosphere over Martian history, Icarus, 206, 28 – 39, doi: 10.1016/j.icarus.2009.04.036.
dc.identifier.citedreferenceVogt, M. F., et al. ( 2015 ), Ionopause‐like density gradients in the Martian ionosphere: A first look with MAVEN, Geophys. Res. Lett., 42, 8885 – 8893, doi: 10.1002/2015GL065269.
dc.identifier.citedreferenceWithers, P., et al. ( 2015 ), Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data, Geophys. Res. Lett., 42, 8966 – 8976, doi: 10.1002/2015GL065205.
dc.identifier.citedreferenceYagi, M., F. Leblanc, J. Y. Chaufray, F. Gonzalez‐Galindo, S. Hess, and R. Modolo ( 2012 ), Mars exospheric thermal and non‐thermal components: Seasonal and local variations, Icarus, 221, 682 – 693, doi: 10.1016/j.icarus.2012.07.022.
dc.identifier.citedreferenceYee, J. H., J. W. Meriwether Jr., and P. B. Hays ( 1980 ), Detection of a corona of fast atoms during solar maximum, J. Geophys. Res., 85, 3396 – 3400, doi: 10.1029/JA085iA07p03396.
dc.identifier.citedreferenceZahnle, K., and A. Walker ( 1982 ), The evolution of solar ultraviolet luminosity, Rev. Geophys., 20, 280 – 292, doi: 10.1029/RG020i002p00280.
dc.identifier.citedreferenceZhang, M. H. G., J. G. Luhmann, S. W. Bougher, and A. F. Nagy ( 1993 ), The ancient oxygen atmosphere of Mars: Implications for atmosphere evolution, J. Geophys. Res., 98, 10,915 – 10,923, doi: 10.1029/93JE00231.
dc.identifier.citedreferenceZhao, J., and F. Tian ( 2015 ), Photochemical escape of oxygen from early Mars, Icarus, 250, 477 – 481, doi: 10.1016/j.icarus.2014.12.032.
dc.identifier.citedreferenceBenna, M., P. R. Mahaffy, J. M. Grebowsky, J. L. Fox, R. V. Yelle, and B. M. Jakosky ( 2015 ), First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s neutral gas and ion mass spectrometer, Geophys. Res. Lett., 42, 8958 – 8965, doi: 10.1002/2015GL065146.
dc.identifier.citedreferenceBougher, S. W., D. Pawlowski, J. Bell, S. Nelli, T. McDunn, J. Murphy, M. Chizek, and A. Ridley ( 2015a ), Mars Global Ionosphere Thermosphere Model (M‐GITM): I. Solar cycle, seasonal, and diurnal variations of the upper atmosphere, J. Geophys. Res. Planets, 120, 311 – 342, doi: 10.1002/2014JE004715.
dc.identifier.citedreferenceBougher, S. W., et al. ( 2015b ), Early MAVEN deep dip campaign reveals thermosphere and ionosphere variability, Science, 350 ( 6261 ), aad0459, doi: 10.1126/science.aad0459.
dc.identifier.citedreferenceBougher, S. W., T. E. Cravens, J. Grebowsky, and J. Luhmann ( 2015c ), The aeronomy of Mars: Characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape, Space Sci. Rev., 195, 423, doi: 10.1007/s11214-014-0053-7.
dc.identifier.citedreferenceBrain, D. A., et al. ( 2015 ), The spatial distribution of planetary ion fluxes near Mars observed by MAVEN, Geophys. Res. Lett., 42, 9142 – 9148, doi: 10.1002/2015GL065293.
dc.identifier.citedreferenceChaufray, J. Y., R. Modolo, F. Leblanc, G. Chanteur, R. E. Johnson, and J. G. Luhmann ( 2007 ), Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space, J. Geophys. Res., 112, E09009, doi: 10.1029/2007JE002915.
dc.identifier.citedreferenceChen, R. H., T. E. Cravens, and A. F. Nagy ( 1978 ), The Martian ionosphere in light of the Viking observations, J. Geophys. Res., 83, 3871 – 3876, doi: 10.1029/JA083iA08p03871.
dc.identifier.citedreferenceCipriani, F., F. LeBlanc, and J. J. Berthelier ( 2007 ), Martian corona: Nonthermal sources of hot heavy species, J. Geophys. Res., 112, E09009, doi: 10.1029/2007JE002915.
dc.identifier.citedreferenceCravens, T. E., J. U. Kozyra, A. F. Nagy, T. I. Gombosi, and M. Kurtz ( 1987 ), Electron impact ionization in the vicinity of comets, J. Geophys. Res., 92, 7341 – 7353, doi: 10.1029/JA092iA07p07341.
dc.identifier.citedreferenceCravens, T. E., et al. ( 2010 ), Dynamical and magnetic field time constants for Titan’s ionosphere—Empirical estimates and comparisons with Venus, J. Geophys. Res., 115, A08319, doi: 10.1029/2009JA015050.
dc.identifier.citedreferenceDeighan, J., et al. ( 2015 ), MAVEN IUVS observation of the hot oxygen corona at Mars, Geophys. Res. Lett., 42, 9009 – 9014, doi: 10.1002/2015GL065487.
dc.identifier.citedreferenceDong, C., S. W. Bougher, Y. Ma, G. Toth, A. F. Nagy, and D. Najib ( 2014 ), Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multi‐fluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708 – 2715, doi: 10.1002/2014GL059515.
dc.identifier.citedreferenceErgun, R. E., L. Andersson, W. K. Peterson, D. Brain, G. T. Delory, D. L. Mitchell, R. P. Lin, and A. W. Yau ( 2006 ), Role of plasma waves in Mars’ atmospheric loss, Geophys. Res. Lett., 33, L14103, doi: 10.1029/2006GL025785.
dc.identifier.citedreferenceErgun, R. E., M. W. Morooka, L. A. Andersson, C. M. Fowler, G. T. Delory, D. J. Andrews, A. I. Eriksson, T. McEnulty, and B. M. Jakosky ( 2015 ), Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument, Geophys. Res. Lett., 42, 8846 – 8853, doi: 10.1002/2015GL065280.
dc.identifier.citedreferenceErgun, R. E., et al. ( 2016 ), Enhanced O 2 + loss at Mars due to an ambipolar electric field from electron heating, J. Geophys. Res. Space Physics, 121, 4668 – 4678, doi: 10.1002/2016JA022349.
dc.identifier.citedreferenceFox, J. L. ( 1993 ), The production and escape of nitrogen atoms on Mars, J. Geophys. Res., 98, 3297 – 3310, doi: 10.1029/92JE02289.
dc.identifier.citedreferenceFox, J. L. ( 1997 ), Upper limits to the outflow of ions at Mars: Implications for atmospheric evolution, Geophys. Res. Lett., 24, 2901 – 2904, doi: 10.1029/97GL52842.
dc.identifier.citedreferenceFox, J. L. ( 2009 ), Morphology of the dayside ionosphere of Mars: Implication for ion outflows, J. Geophys. Res., 114, E12005, doi: 10.1029/2009JE003432.
dc.identifier.citedreferenceFox, J. L., and A. B. Hać ( 2009 ), Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method, Icarus, 204, 527 – 544, doi: 10.1016/j.icarus.2009.07.005.
dc.identifier.citedreferenceFox, J. L., and A. B. Hać ( 2014 ), The escape of O from Mars: Sensitivity to the elastic cross sections, Icarus, 228, 375 – 385, doi: 10.1016/j.icarus.2013.10.014.
dc.identifier.citedreferenceFox, J. L., M. Benna, P. R. Mahaffy, and B. M. Jakosky ( 2015 ), Water and water ions in the Martian thermosphere/ionosphere, Geophys. Res. Lett., 42, 8977 – 8985, doi: 10.1002/2015GL065465.
dc.identifier.citedreferenceFränz, M., E. Dubinin, E. Nielsen, J. Woch, S. Barabash, R. Lundin, and A. Fedorov ( 2010 ), Transterminator ion flow in the Martian ionosphere, Planet. Space Sci., 58, 1442 – 1454, doi: 10.1016/j.pss.2010.06.009.
dc.identifier.citedreferenceGröller, H., H. Lichtenegger, H. Lammer, and V. I. Shematovich ( 2014 ), Hot oxygen and carbon escape from the Martian atmosphere, Planet. Space Sci., 98, 93 – 105, doi: 10.1016/j.pss.2014.01.007.
dc.identifier.citedreferenceHanson, W. B., and G. P. Mantas ( 1988 ), Viking electron temperature measurements: Evidence of a magnetic field in the Martian ionosphere, J. Geophys. Res., 93, 7538 – 7544, doi: 10.1029/JA093iA07p07538.
dc.identifier.citedreferenceHanson, W. B., S. Sanatani, and D. R. Zuccaro ( 1977 ), The Martian ionosphere as observed by the Viking retarding potential analyzers, J. Geophys. Res., 82, 4351 – 4363, doi: 10.1029/JS082i028p04351.
dc.identifier.citedreferenceHodges, R. R. ( 2000 ), Distributions of hot oxygen for Venus and Mars, J. Geophys. Res., 105, 6971 – 6981, doi: 10.1029/1999JE001138.
dc.identifier.citedreferenceHodges, R. R. ( 2002 ), The rate of loss of water from Mars, Geophys. Res. Lett., 29 ( 3 ), 1038, doi: 10.1029/2001GL013853.
dc.identifier.citedreferenceJohnson, R. E., and J. G. Luhmann ( 1998 ), Sputter contribution to the atmospheric corona on Mars, J. Geophys. Res., 103, 3649 – 3653, doi: 10.1029/97JE03266.
dc.identifier.citedreferenceKharchenko, V., A. Dalgarno, B. Zygelman, and J. H. Yee ( 2000 ), Energy transfer in collisions of oxygen atoms in the terrestrial atmosphere, J. Geophys. Res., 105 ( 24 ), 24,899 – 24,906, doi: 10.1029/2000JA000085.
dc.identifier.citedreferenceKim, J., A. F. Nagy, J. L. Fox, and T. E. Cravens ( 1998 ), Solar cycle variability of hot oxygen atoms at Mars, J. Geophys. Res., 103, 29,339 – 29,342, doi: 10.1029/98JA02727.
dc.identifier.citedreferenceKrestyanikova, M. A., and V. I. Shematovich ( 2005 ), Stochastic models of hot planetary and satellite coronas: A photochemical source of hot oxygen in the upper atmosphere of Mars, Sol. Syst. Res., 39, 22 – 32, doi: 10.1007/s11208-005-0002-9.
dc.identifier.citedreferenceLammer, H., and S. J. Bauer ( 1991 ), Nonthermal atmospheric escape from Mars and Titan, J. Geophys. Res., 96, 1819 – 1825, doi: 10.1029/90JA01676.
dc.identifier.citedreferenceLammer, H., H. I. M. Lichtenegger, C. Kolb, I. Ribas, E. F. Guinan, R. Abart, and S. J. Bauer ( 2003 ), Loss of water from Mars: Implications for the oxidation of the soil, Icarus, 165, 9 – 25, doi: 10.1016/S0019-1035(03)00170-2.
dc.identifier.citedreferenceLammer, H., J. F. Kasting, E. Chassefiere, R. E. Johnson, Y. N. Kulikov, and F. Tian ( 2008 ), Atmospheric escape and evolution of terrestrial planets and satellites, Space Sci. Rev., 139 ( 1 ), 399 – 436, doi: 10.1007/978-0-387-87825-6_11.
dc.identifier.citedreferenceLee, Y., M. R. Combi, V. Tenishev, S. W. Bougher, and R. J. Lillis ( 2015a ), Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere and exosphere, J. Geophys. Res. Planets, 120, 1880 – 1892, doi: 10.1002/2015JE004890.
dc.identifier.citedreferenceLee, Y., M. R. Combi, V. Tenishev, S. W. Bougher, J. Deighan, N. M. Schneider, W. E. McClintock, and B. M. Jakosky ( 2015b ), A comparison of 3‐D model predictions of Mars’ oxygen corona with early MAVEN IUVS observations, Geophys. Res. Lett., 42, 9015 – 9022, doi: 10.1002/2015GL065291.
dc.identifier.citedreferenceLillis, R. J., et al. ( 2015 ), Characterizing atmospheric escape from Mars today and through time, with MAVEN, Space Sci. Rev., 195, 357 – 422, doi: 10.1007/s11214-015-0165-8.
dc.identifier.citedreferenceLuhmann, J. G. ( 1997 ), Correction to “The ancient oxygen exosphere of Mars: Implications for atmosphere evolution” by Zhang et al., J. Geophys. Res. 102, 1637, doi: 10.1029/96JE03440.
dc.identifier.citedreferenceLuhmann, J. G., and T. E. Cravens ( 1991 ), Magnetic fields in the ionosphere of Venus, Space Sci. Rev., 55, 201 – 274, doi: 10.1007/BF00177138.
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Holmstrom, H. Nilsson, Y. Futaana, R. Ramstad, M. Yamauchi, E. Dubinin, and M. Fraenz ( 2013 ), Solar cycle effects on the ion escape from Mars, Geophys. Res. Lett., 40, 6028 – 6032, doi: 10.1002/2013GL058154.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.