Show simple item record

MESSENGER observations of solar energetic electrons within Mercury’s magnetosphere

dc.contributor.authorGershman, Daniel J.
dc.contributor.authorRaines, Jim M.
dc.contributor.authorSlavin, James A.
dc.contributor.authorZurbuchen, Thomas H.
dc.contributor.authorAnderson, Brian J.
dc.contributor.authorKorth, Haje
dc.contributor.authorHo, George C.
dc.contributor.authorBoardsen, Scott A.
dc.contributor.authorCassidy, Timothy A.
dc.contributor.authorWalsh, Brian M.
dc.contributor.authorSolomon, Sean C.
dc.date.accessioned2017-04-13T20:35:43Z
dc.date.available2017-04-13T20:35:43Z
dc.date.issued2015-10
dc.identifier.citationGershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Anderson, Brian J.; Korth, Haje; Ho, George C.; Boardsen, Scott A.; Cassidy, Timothy A.; Walsh, Brian M.; Solomon, Sean C. (2015). "MESSENGER observations of solar energetic electrons within Mercury’s magnetosphere." Journal of Geophysical Research: Space Physics 120(10): 8559-8571.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/136321
dc.description.abstractDuring solar energetic particle (SEP) events, the inner heliosphere is bathed in MeV electrons. Through magnetic reconnection, these relativistic electrons can enter the magnetosphere of Mercury, nearly instantaneously filling the regions of open field lines with precipitating particles. With energies sufficient to penetrate solid aluminum shielding more than 1 mm thick, these electrons were observable by a number of sensors on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Because of its thin shielding, frequent sampling, and continuous temporal coverage, the Fast Imaging Plasma Spectrometer provided by far the most sensitive measurements of MeV electrons of all MESSENGER sensors. Sharp changes in energetic electron flux coincided with topological boundaries in the magnetosphere, including the magnetopause, polar cap, and central plasma sheet. Precipitating electrons with fluxes equal to ~40% of their corresponding upstream levels were measured over the entire polar cap, demonstrating that electron space weathering of Mercury’s surface is not limited to the cusp region. We use these distinct precipitation signatures acquired over 33 orbits during 11 SEP events to map the full extent of Mercury’s northern polar cap. We confirm a highly asymmetric polar cap, for which the dayside and nightside boundary latitudes range over ~50–70°N and ~30–60°N, respectively. These latitudinal ranges are consistent with average models of Mercury’s magnetic field but exhibit a large variability indicative of active dayside and nightside magnetic reconnection processes. Finally, we observed enhanced electron fluxes within the central plasma sheet. Although these particles cannot form a stable ring current around the planet, their motion results in an apparent trapped electron population at low latitudes in the magnetotail.Key PointsSolar energetic electrons map Mercury’s magnetospheric topologySolar wind electrons likely produce polar rain at MercuryMeV electrons can be quasi‐trapped in Mercury’s magnetotail
dc.publisherWiley Periodicals, Inc.
dc.publisherCRC Press, Francis & Taylor Group
dc.subject.otherSEP
dc.subject.otherpolar rain
dc.subject.otherenergetic electrons
dc.subject.otherMercury
dc.subject.otherMESSENGER
dc.titleMESSENGER observations of solar energetic electrons within Mercury’s magnetosphere
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136321/1/jgra52111.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136321/2/jgra52111_am.pdf
dc.identifier.doi10.1002/2015JA021610
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePilipp, W. G., H. Miggenrieder, M. D. Montgomery, K.‐H. Mühlhäuser, H. Rosenbauer, and R. Schwenn ( 1987 ), Characteristics of electron velocity distribution functions in the solar wind derived from the Helios Plasma Experiment, J. Geophys. Res., 92, 1075 – 1092, doi: 10.1029/JA092iA02p01075.
dc.identifier.citedreferenceMarsch, E. ( 2006 ), Kinetic physics of the solar corona and solar wind, Living Rev. Sol. Phys., 3, 1 – 100.
dc.identifier.citedreferenceMcLain, J. L., A. L. Sprague, G. A. Grieves, D. Schriver, P. Travnicek, and T. M. Orlando ( 2011 ), Electron‐stimulated desorption of silicates: A potential source for ions in Mercury’s space environment, J. Geophys. Res., 116, E03007, doi: 10.1029/2010JE003714.
dc.identifier.citedreferenceMilan, S. E. ( 2004 ), A simple model of the flux content of the distant magnetotail, J. Geophys. Res., 109, A07210, doi: 10.1029/2004JA010397.
dc.identifier.citedreferenceMilan, S. E., and J. A. Slavin ( 2011 ), An assessment of the length and variability of Mercury’s magnetotail, Planet. Space Sci., 59, 2058 – 2065.
dc.identifier.citedreferenceMilillo, A., et al. ( 2005 ), Surface‐exosphere‐magnetosphere system of Mercury, Space Sci. Rev., 117, 397 – 444.
dc.identifier.citedreferenceOgilvie, K. W., J. D. Scudder, V. M. Vasyliunas, R. E. Hartle, and G. L. Siscoe ( 1977 ), Observations at the planet Mercury by the plasma electron experiment: Mariner 10, J. Geophys. Res., 82, 1807 – 1824, doi: 10.1029/JA082i013p01807.
dc.identifier.citedreferenceOlsen, R. C., L. J. Scott, and S. A. Boardsen ( 1994 ), Comparison between Liouville’s theorem and observed latitudinal distributions of trapped ions in the plasmapause region, J. Geophys. Res., 99, 2191 – 2203, doi: 10.1029/93JA02776.
dc.identifier.citedreferenceOlson, W. P., and K. A. Pfitzer ( 1985 ), Magnetospheric responses to the gradient drift entry of solar wind plasma, J. Geophys. Res., 90, 10,823 – 10,833, doi: 10.1029/JA090iA11p10823.
dc.identifier.citedreferenceRaines, J. M., D. J. Gershman, J. A. Slavin, T. H. Zurbuchen, H. Korth, B. J. Anderson, and S. C. Solomon ( 2014 ), Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions, J. Geophys. Res. Space Physics, 119, 6587 – 6602, doi: 10.1002/2014JA020120.
dc.identifier.citedreferenceReames, D. V. ( 1995 ), Solar energetic particles: A paradigm shift, Rev. Geophys., 33, 585 – 589, doi: 10.1029/95RG00188.
dc.identifier.citedreferenceSchriver, D., et al. ( 2011a ), Quasi‐trapped ion and electron populations at Mercury, Geophys. Res. Lett., 38, L23103, doi: 10.1029/2011GL049629.
dc.identifier.citedreferenceSchriver, D., et al. ( 2011b ), Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron‐stimulated desorption, Planet. Space Sci., 59, 2026 – 2036, doi: 10.1016/j.pss.2011.03.008.
dc.identifier.citedreferenceSimpson, J. A., J. H. Eraker, J. E. Lamport, and P. H. Walpole ( 1974 ), Electrons and protons accelerated in Mercury’s magnetic field, Science, 185, 160 – 166, doi: 10.1126/science.185.4146.160.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere, Science, 324, 606 – 610, doi: 10.1126/science.1172011.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail, Science, 329, 665 – 668, doi: 10.1126/science.1188067.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012 ), MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury, J. Geophys. Res., 117, A01215, doi: 10.1029/2011JA016900.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2014 ), MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions, J. Geophys. Res. Space Physics, 119, 8087 – 8116, doi: 10.1002/2014JA020319.
dc.identifier.citedreferenceSolomon, S. C., et al. ( 2001 ), The MESSENGER mission to Mercury: Scientific objectives and implementation, Planet. Space Sci., 49, 1445 – 1465, doi: 10.1016/S0032-0633(01)00085-X.
dc.identifier.citedreferenceSpeiser, T. W. ( 1965 ), Particle trajectories in model current sheets: 1. Analytical solutions, J. Geophys. Res., 70, 4219 – 4226, doi: 10.1029/JZ070i017p04219.
dc.identifier.citedreferenceStassinopoulos, E. G., and J. P. Raymond ( 1988 ), The space radiation environment for electronics, Proc. IEEE, 76, 1423 – 1442.
dc.identifier.citedreferenceŠtverák, Š., M. Maksimovic, P. M. Trávníček, E. Marsch, A. N. Fazakerley, and E. E. Scime ( 2009 ), Radial evolution of nonthermal electron populations in the low‐latitude solar wind: Helios, Cluster, and Ulysses observations, J. Geophys. Res., 114, A05104, doi: 10.1029/2008JA013883.
dc.identifier.citedreferenceTrávníček, P. M., P. Hellinger, D. Schriver, D. Herčík, J. A. Slavin, and B. J. Anderson ( 2009 ), Kinetic instabilities in Mercury’s magnetosphere: Three‐dimensional simulation results, Geophys. Res. Lett., 36, L07104, doi: 10.1029/2008GL036630.
dc.identifier.citedreferenceTylka, A. J., J. H. Adams, P. R. Boberg, B. Brownstein, W. F. Dietrich, E. O. Flückigher, E. L. Petersen, M. A. Shea, D. F. Smart, and E. C. Smith ( 1997 ), CREME96: A revision of the cosmic ray effects on micro‐electronics code, IEEE Trans. Nucl. Sci., 44, 2150 – 2160.
dc.identifier.citedreferenceUritsky, V. M., J. A. Slavin, G. V. Khazanov, E. F. Donovan, S. A. Boardsen, B. J. Anderson, and H. Korth ( 2011 ), Kinetic‐scale magnetic turbulence and finite Larmor radius effects at Mercury, J. Geophys. Res., 116, A09236, doi: 10.1029/2011JA016744.
dc.identifier.citedreferenceWalsh, B. M., A. S. Ryou, D. G. Sibeck, and I. I. Alexeev ( 2013 ), Energetic particle dynamics in Mercury’s magnetosphere, J. Geophys. Res. Space Physics, 118, 1992 – 1999, doi: 10.1002/jgra.50266.
dc.identifier.citedreferenceWinningham, J. D., and W. J. Heikkila ( 1974 ), Polar cap auroral electron fluxes observed with Isis 1, J. Geophys. Res., 79, 949 – 957, doi: 10.1029/JA079i007p00949.
dc.identifier.citedreferenceWinslow, R. M., et al. ( 2014 ), Mercury’s surface magnetic field determined from proton‐reflection magnetometry, Geophys. Res. Lett., 41, 4463 – 4470, doi: 10.1002/2014GL060258.
dc.identifier.citedreferenceWiza, J. L. ( 1979 ), Microchannel plate detectors, Nucl. Instrum. Methods, 162, 587 – 601.
dc.identifier.citedreferenceZhang, Y., L. J. Paxton, and A. T. Y. Lui ( 2007 ), Polar rain aurora, Geophys. Res. Lett., 34, L20114, doi: 10.1029/2007GL031602.
dc.identifier.citedreferenceZurbuchen, T. H., et al. ( 2011 ), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862 – 1865, doi: 10.1126/science.1211302.
dc.identifier.citedreferenceAlexeev, I. I., et al. ( 2010 ), Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23 – 39, doi: 10.1016/j.icarus.2010.01.024.
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450.
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859 – 1862, doi: 10.1126/science.1211001.
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556.
dc.identifier.citedreferenceBaker, D. N. ( 1986 ), Jovian electron populations in the magnetosphere of Mercury, Geophys. Res. Lett., 13, 789 – 792, doi: 10.1029/GL013i008p00789.
dc.identifier.citedreferenceBaker, D. N., S. J. Bame, W. C. Feldman, J. T. Gosling, R. D. Zwickl, J. A. Slavin, and E. J. Smith ( 1986 ), Strong electron bidirectional anisotropies in the distant tail: ISEE 3 observations of polar rain, J. Geophys. Res., 91, 5637 – 5662, doi: 10.1029/JA091iA05p05637.
dc.identifier.citedreferenceBieber, J., J. Earl, G. Green, H. Kunow, R. Müller‐Mellin, and G. Wibberenz ( 1980 ), Interplanetary pitch angle scattering and coronal transport of solar energetic particles: New information from Helios, J. Geophys. Res., 85, 2313 – 2323, doi: 10.1029/JA085iA05p02313.
dc.identifier.citedreferenceBoardsen, S. A., J. A. Slavin, B. J. Anderson, H. Korth, D. Schriver, and S. C. Solomon ( 2012 ), Survey of coherent ~1 Hz waves in Mercury’s inner magnetosphere from MESSENGER observations, J. Geophys. Res., 117, A00M05, doi: 10.1029/2012JA017822.
dc.identifier.citedreferenceBoardsen, S. A., E.‐H. Kim, J. M. Raines, J. A. Slavin, D. J. Gershman, B. J. Anderson, H. Korth, T. Sundberg, D. Schriver, and P. Travnicek ( 2015 ), Interpreting ~1 Hz magnetic compressional waves in Mercury’s inner magnetosphere in terms of propagating ion‐Bernstein waves, J. Geophys. Res. Space Physics, 120, 4213 – 4228, doi: 10.1002/2014JA020910.
dc.identifier.citedreferenceBüchner, J., and L. M. Zelenyi ( 1989 ), Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion, J. Geophys. Res., 94, 11,821 – 11,842, doi: 10.1029/JA094iA09p11821.
dc.identifier.citedreferenceBurch, J. L. ( 1973 ), Rate of erosion of dayside magnetic flux based on a quantitative study of the dependence of polar cusp latitude on the interplanetary magnetic field, Radio Sci., 8, 955 – 961, doi: 10.1029/RS008i011p00955.
dc.identifier.citedreferenceCane, H. V., D. V. Reames, and T. T. von Rosenvinge ( 1988 ), The role of interplanetary shocks in the longitude distribution of solar energetic particles, J. Geophys. Res., 93, 9555 – 9567, doi: 10.1029/JA093iA09p09555.
dc.identifier.citedreferenceCane, H. V., T. T. von Rosenvinge, and R. E. McGuire ( 1990 ), Energetic particle observations at the Helios 1 spacecraft of shocks associated with coronal mass ejections, J. Geophys. Res., 95, 6575 – 6579, doi: 10.1029/JA095iA05p06575.
dc.identifier.citedreferenceCarron, N. J. ( 2007 ), An Introduction to the Passage of Energetic Particles Through Matter, 384 pp., CRC Press, Francis & Taylor Group, Boca Raton, Fla.
dc.identifier.citedreferenceCassidy, T. A., A. W. Merkel, M. H. Burger, M. Sarantos, R. M. Killen, W. E. McClintock, and R. J. Vervack Jr. ( 2014 ), Mercury’s seasonal sodium exosphere: MESSENGER orbital observations, Icarus, 248, 547 – 559, doi: 10.1016/j.icarus.2014.10.037.
dc.identifier.citedreferenceChriston, S. P., J. Feynman, and J. A. Slavin ( 1987 ), Dynamic substorm injections: Similar magnetospheric phenomena at Earth and Mercury, in Magnetotail Physics, edited by A. T. Y. Lui, pp. 393 – 400, Johns Hopkins Univ. Press, Baltimore, Md.
dc.identifier.citedreferenceCliver, E. W., and H. V. Cane ( 2002 ), The last word: Gradual and impulsive solar energetic particle events, Eos Trans. AGU, 83, 61 – 68, doi: 10.1029/2002EO000040.
dc.identifier.citedreferenceDaly, E. J., A. Hilgers, G. Drolshagen, and H. D. R. Evans ( 1996 ), Space environment analysis: Experience and trends, in Proceedings of the ESA 1996 Symposium on Environment Modelling for Space‐Based Applications, ESA SP‐392, edited by W. Burke and T.‐D. Guyenne, pp. 15 – 22, Eur. Space Res. and Technol. Center, Noordwijk, Netherlands.
dc.identifier.citedreferenceDelcourt, D. C., S. Grimald, F. Leblanc, J.‐J. Berthelier, A. Millilo, A. Mura, S. Orsini, and T. E. Moore ( 2003 ), A quantitative model of the planetary Na + contribution to Mercury’s magnetosphere, Ann. Geophys., 21, 1723 – 1736, doi: 10.5194/angeo-21-1723-2003.
dc.identifier.citedreferenceDelcourt, D. C., K. Seki, N. Terada, and Y. Miyoshi ( 2005 ), Electron dynamics during substorm dipolarization in Mercury’s magnetosphere, Ann. Geophys., 23, 3389 – 3398, doi: 10.5194/angeo-23-3389-2005.
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.
dc.identifier.citedreferenceDomingue, D. L., et al. ( 2014 ), Mercury’s weather‐beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies, Space Sci. Rev., 181, 121 – 124, doi: 10.1007/s11214-014-0039-5.
dc.identifier.citedreferenceDröge, W. ( 1995 ), Solar energetic electrons: I. Multiple spacecraft observations, in 24th International Cosmic Ray Conference, vol. 4, edited by N. Iucci and E. Lamanna, pp. 187 – 190, International Union of Pure and Applied Physics, Rome, Italy.
dc.identifier.citedreferenceFairfield, D. H., and J. D. Scudder ( 1985 ), Polar rain: Solar coronal electrons in the Earth’s magnetosphere, J. Geophys. Res., 90, 4055 – 4068, doi: 10.1029/JA090iA05p04055.
dc.identifier.citedreferenceGershman, D. J., G. Gloeckler, J. A. Gilbert, J. M. Raines, L. A. Fisk, S. C. Solomon, E. C. Stone, and T. H. Zurbuchen ( 2013 ), Observations of interstellar helium pickup ions in the inner heliosphere, J. Geophys. Res. Space Physics, 118, 1389 – 1402, doi: 10.1002/jgra.50227.
dc.identifier.citedreferenceGershman, D. J., L. A. Fisk, G. Gloeckler, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, and S. C. Solomon ( 2014a ), The velocity distribution of pickup He + measured at 0.3 AU by MESSENGER, Astrophys. J., 788, 124, doi: 10.1088/0004-637X/788/124.
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2014b ), Ion kinetic properties in Mercury’s pre‐midnight plasma sheet, Geophys. Res. Lett., 41, 5740 – 5747, doi: 10.1002/2014GL060468.
dc.identifier.citedreferenceGershman, D. J., J. M. Raines, J. A. Slavin, T. H. Zurbuchen, T. Sundberg, S. A. Boardsen, B. J. Anderson, H. Korth, and S. C. Solomon ( 2015 ), MESSENGER observations of multiscale Kelvin‐Helmholtz vortices at Mercury, J. Geophys. Res. Space Physics, 120, 4354 – 4368, doi: 10.1002/2014JA020903.
dc.identifier.citedreferenceGilbert, J. A., D. J. Gershman, G. Gloeckler, R. A. Lundgren, T. H. Zurbuchen, T. M. Orlando, J. McLain, and R. von Steiger ( 2014 ), Characterization of background sources in space‐based time‐of‐flight mass spectrometers, Rev. Sci. Instrum., 85, 091301, doi: 10.1063/1.4894694.
dc.identifier.citedreferenceGoldsten, J. O., et al. ( 2007 ), The MESSENGER Gamma‐Ray and Neutron Spectrometer, Space Sci. Rev., 131, 339 – 391, doi: 10.1007/s11214-007-9262-7.
dc.identifier.citedreferenceGosling, J. T., D. N. Baker, S. J. Bame, and R. D. Zwickl ( 1986 ), Bidirectional solar wind electron heat flux and hemispherically symmetric polar rain, J. Geophys. Res., 91, 11,352 – 11,358, doi: 10.1029/JA091iA10p11352.
dc.identifier.citedreferenceGussenhoven, M. S., D. A. Hardy, N. Heinemann, and R. K. Burkhardt ( 1984 ), Morphology of the polar rain, J. Geophys. Res., 89, 9785 – 9800, doi: 10.1029/JA089iA11p09785.
dc.identifier.citedreferenceHarres, K., et al. ( 2008 ), Development and calibration of a Thomson parabola with microchannel plate for the detection of laser‐accelerated MeV ions, Rev. Sci. Instrum., 79, 093306.
dc.identifier.citedreferenceHo, G. C., R. D. Starr, R. E. Gold, S. M. Krimigis, J. A. Slavin, D. N. Baker, B. J. Anderson, R. L. McNutt Jr., L. R. Nittler, and S. C. Solomon ( 2011a ), Observations of suprathermal electrons in Mercury’s magnetosphere during the three MESSENGER flybys, Planet. Space Sci., 59, 2016 – 2025, doi: 10.1016/j.pss.2011.01.011.
dc.identifier.citedreferenceHo, G. C., et al. ( 2011b ), MESSENGER observations of transient bursts of energetic electrons in Mercury’s magnetosphere, Science, 333, 1866 – 1868, doi: 10.1126/science.1211001.
dc.identifier.citedreferenceHo, G. C., S. M. Krimigis, R. E. Gold, D. N. Baker, B. J. Anderson, H. Korth, J. A. Slavin, R. L. McNutt Jr., R. M. Winslow, and S. C. Solomon ( 2012 ), Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere, J. Geophys. Res., 117, A00M04, doi: 10.1029/2012JA017983.
dc.identifier.citedreferenceHones, E. W., Jr., J. R. Asbridge, S. J. Bame, M. D. Montgomery, S. Singer, and S.‐I. Akasofu ( 1972 ), Measurements of magnetotail plasma flow made with Vela 4B, J. Geophys. Res., 77, 5503 – 5522, doi: 10.1029/JA077i028p05503.
dc.identifier.citedreferenceIp, W.‐H. ( 1987 ), Dynamics of electrons and heavy ions in Mercury’s magnetosphere, Icarus, 71, 441 – 447.
dc.identifier.citedreferenceJohnson, C. L., et al. ( 2012 ), MESSENGER observations of Mercury’s magnetic field structure, J. Geophys. Res., 117, E00L14, doi: 10.1029/2012JE004217.
dc.identifier.citedreferenceKahler, S. W. ( 2007 ), Solar sources of heliospheric energetic electron events—Shocks or flares?, Space Sci. Rev., 129, 359 – 390.
dc.identifier.citedreferenceKorth, H., B. J. Anderson, C. L. Johnson, R. M. Winslow, J. A. Slavin, M. E. Purucker, S. C. Solomon, and R. L. McNutt Jr. ( 2012 ), Characteristics of the plasma distribution in Mercury’s equatorial magnetosphere derived from MESSENGER Magnetometer observations, J. Geophys. Res., 117, A00M07, doi: 10.1029/2012JA018052.
dc.identifier.citedreferenceKorth, H., B. J. Anderson, D. J. Gershman, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, S. C. Solomon, and R. L. McNutt Jr. ( 2014 ), Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations, J. Geophys. Res. Space Physics, 119, 2917 – 2932, doi: 10.1002/2013JA019567.
dc.identifier.citedreferenceLario, D., M.‐B. Kallenrode, R. B. Decker, E. C. Roelof, S. M. Krimigis, A. Aran, and B. Sanahuja ( 2006 ), Radial and longitudinal dependence of solar 4–13 MeV and 27–37 MeV proton peak intensities and fluences: Helios and IMP 8 observations, Astrophys. J., 653, 1531 – 1544.
dc.identifier.citedreferenceLario, D., G. C. Ho, E. C. Roelof, B. J. Anderson, and H. Korth ( 2013 ), Intense solar near‐relativistic electron events at 0.3 AU, J. Geophys. Res. Space Physics, 118, 63 – 73, doi: 10.1002/jgra.50106.
dc.identifier.citedreferenceLaurenza, M., M. Storini, R. Vainio, and L. Desorgher ( 2011 ), Cutoff rigidities for Mercury‐orbiting spacecraft, in Proceedings of the 32nd International Cosmic Ray Conference, 11, 436 – 438, Beijing, China, doi: 10.7529/ICRC2011/V11/0230.
dc.identifier.citedreferenceLawrence, D. J., et al. ( 2015 ), Comprehensive survey of energetic electron events in Mercury’s magnetosphere with data from the MESSENGER Gamma‐Ray and Neutron Spectrometer, J. Geophys. Res. Space Physics, 120, 2851 – 2876, doi: 10.1002/2014JA020792.
dc.identifier.citedreferenceLeblanc, F., J. G. Luhmann, R. E. Johnson, and M. Liu ( 2003 ), Solar energetic particle event at Mercury, Planet. Space Sci., 51, 339 – 352, doi: 10.1016/S0032-0633(02)00207-6.
dc.identifier.citedreferenceLei, F., P. R. Truscott, C. S. Dyer, B. Quaghebeur, D. Heynderickx, P. Nieminen, H. Evans, and E. Daly ( 2002 ), MULASSIS: A Geant4‐based multilayered shielding simulation tool, IEEE Trans. Nucl. Sci., 49, 2788 – 2793, doi: 10.1109/TNS.2002.805351.
dc.identifier.citedreferenceMadey, T. E., B. V. Yakshinskiy, V. N. Ageev, and R. E. Johnson ( 1998 ), Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon, J. Geophys. Res., 103, 5873 – 5887, doi: 10.1029/98JE00230.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.