dc.contributor.author |
Agarwal, Shailesh |
|
dc.contributor.author |
Loder, Shawn J. |
|
dc.contributor.author |
Cholok, David |
|
dc.contributor.author |
Peterson, Joshua |
|
dc.contributor.author |
Li, John |
|
dc.contributor.author |
Breuler, Christopher |
|
dc.contributor.author |
Cameron Brownley, R. |
|
dc.contributor.author |
Hsin Sung, Hsiao |
|
dc.contributor.author |
Chung, Michael T. |
|
dc.contributor.author |
Kamiya, Nobuhiro |
|
dc.contributor.author |
Li, Shuli |
|
dc.contributor.author |
Zhao, Bin |
|
dc.contributor.author |
Kaartinen, Vesa |
|
dc.contributor.author |
Davis, Thomas A. |
|
dc.contributor.author |
Qureshi, Ammar T. |
|
dc.contributor.author |
Schipani, Ernestina |
|
dc.contributor.author |
Mishina, Yuji |
|
dc.contributor.author |
Levi, Benjamin |
|
dc.date.accessioned |
2017-04-13T20:35:48Z |
|
dc.date.available |
2018-05-15T21:02:50Z |
en |
dc.date.issued |
2017-03 |
|
dc.identifier.citation |
Agarwal, Shailesh; Loder, Shawn J.; Cholok, David; Peterson, Joshua; Li, John; Breuler, Christopher; Cameron Brownley, R.; Hsin Sung, Hsiao; Chung, Michael T.; Kamiya, Nobuhiro; Li, Shuli; Zhao, Bin; Kaartinen, Vesa; Davis, Thomas A.; Qureshi, Ammar T.; Schipani, Ernestina; Mishina, Yuji; Levi, Benjamin (2017). "Scleraxis‐Lineage Cells Contribute to Ectopic Bone Formation in Muscle and Tendon." STEM CELLS 35(3): 705-710. |
|
dc.identifier.issn |
1066-5099 |
|
dc.identifier.issn |
1549-4918 |
|
dc.identifier.uri |
http://hdl.handle.net/2027.42/136325 |
|
dc.publisher |
Wiley Periodicals, Inc. |
|
dc.subject.other |
Fibrodysplasia ossificans progressiva |
|
dc.subject.other |
Adult stem cells |
|
dc.subject.other |
Bone |
|
dc.subject.other |
Osteoblast |
|
dc.subject.other |
Progenitor cells |
|
dc.subject.other |
Skeleton |
|
dc.subject.other |
Tissue specific stem cells |
|
dc.subject.other |
Heterotopic ossification |
|
dc.title |
Scleraxis‐Lineage Cells Contribute to Ectopic Bone Formation in Muscle and Tendon |
|
dc.type |
Article |
en_US |
dc.rights.robots |
IndexNoFollow |
|
dc.subject.hlbsecondlevel |
Molecular, Cellular, and Developmental Biology |
|
dc.subject.hlbtoplevel |
Health Sciences |
|
dc.description.peerreviewed |
Peer Reviewed |
|
dc.description.bitstreamurl |
https://deepblue.lib.umich.edu/bitstream/2027.42/136325/1/stem2515_am.pdf |
|
dc.description.bitstreamurl |
https://deepblue.lib.umich.edu/bitstream/2027.42/136325/2/stem2515.pdf |
|
dc.identifier.doi |
10.1002/stem.2515 |
|
dc.identifier.source |
STEM CELLS |
|
dc.identifier.citedreference |
Asai S, Otsuru S, Candela ME et al. Tendon progenitor cells in injured tendons have strong chondrogenic potential: The CD105‐negative subpopulation induces chondrogenic degeneration. Stem Cells 2014; 32: 3266 – 3277. |
|
dc.identifier.citedreference |
Sugimoto Y, Takimoto A, Akiyama H et al. Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development 2013; 140: 2280 – 2288. |
|
dc.identifier.citedreference |
Schweitzer R, Chyung JH, Murtaugh LC et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 2001; 128: 3855 – 3866. |
|
dc.identifier.citedreference |
Dyment NA et al. Lineage tracing of resident tendon progenitor cells during growth and natural healing. PloS One 2014; 9: e96113. |
|
dc.identifier.citedreference |
Kan L, Peng CY, McGuire TL et al. Glast‐expressing progenitor cells contribute to heterotopic ossification. Bone 2013; 53: 194 – 203. |
|
dc.identifier.citedreference |
Wosczyna MN, Biswas AA, Cogswell CA et al. Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP‐dependent osteogenic activity and mediate heterotopic ossification. J Bone Miner Res 2012; 27: 1004 – 1017. |
|
dc.identifier.citedreference |
Medici D, Shore EM, Lounev VY et al. Conversion of vascular endothelial cells into multipotent stem‐like cells. Nat Med 2010; 16: 1400 – 1406. |
|
dc.identifier.citedreference |
Lounev VY, Ramachandran R, Wosczyna MN et al. Identification of progenitor cells that contribute to heterotopic skeletogenesis. J Bone Joint Surg Am 2009; 91: 652 – 663. |
|
dc.identifier.citedreference |
Shore EM, Xu M, Feldman GJ et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 2006; 38: 525 – 527. |
|
dc.identifier.citedreference |
Mendias CL, Gumucio JP, Davis ME et al. Transforming growth factor‐beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin‐1 and scleraxis. Muscle Nerve 2012; 45: 55 – 59. |
|
dc.identifier.citedreference |
Lemos DR, Eisner C, Hopkins CI et al. Skeletal muscle‐resident MSCs and bone formation. Bone 2015. |
|
dc.identifier.citedreference |
Kan L, Kessler JA. Evaluation of the cellular origins of heterotopic ossification. Orthopedics 2014; 37: 329 – 340. |
|
dc.identifier.citedreference |
Shimono K et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor‐gamma agonists. Nat Med 2011; 17: 454 – 460. |
|
dc.identifier.citedreference |
Peterson JR, De La Rosa S, Eboda O et al. Treatment of heterotopic ossification through remote ATP hydrolysis. Sci Transl Med 2014; 6: 255ra132. |
|
dc.identifier.citedreference |
Blitz E, Sharir A, Akiyama H et al. Tendon‐bone attachment unit is formed modularly by a distinct pool of Scx‐ and Sox9‐positive progenitors. Development 2013; 140: 2680 – 2690. |
|
dc.owningcollname |
Interdisciplinary and Peer-Reviewed |
|