Show simple item record

Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole

dc.contributor.authorKinsman‐costello, L. E.
dc.contributor.authorSheik, C. S.
dc.contributor.authorSheldon, N. D.
dc.contributor.authorAllen Burton, G.
dc.contributor.authorCostello, D. M.
dc.contributor.authorMarcus, D.
dc.contributor.authorUyl, P. A. Den
dc.contributor.authorDick, G. J.
dc.date.accessioned2017-04-13T20:35:55Z
dc.date.available2018-05-15T21:02:50Zen
dc.date.issued2017-03
dc.identifier.citationKinsman‐costello, L. E. ; Sheik, C. S.; Sheldon, N. D.; Allen Burton, G.; Costello, D. M.; Marcus, D.; Uyl, P. A. Den; Dick, G. J. (2017). "Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole." Geobiology 15(2): 225-239.
dc.identifier.issn1472-4677
dc.identifier.issn1472-4669
dc.identifier.urihttps://hdl.handle.net/2027.42/136330
dc.description.abstractFor a large part of earth’s history, cyanobacterial mats thrived in lowâ oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sedimentâ water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sedimentâ mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a lowâ oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organicâ rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used lowâ throughput or shotgun metagenomic approaches, our highâ throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfateâ reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.
dc.publisherU.S. Environmental Protection Agency
dc.publisherWiley Periodicals, Inc.
dc.titleGroundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136330/1/gbi12215_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136330/2/gbi12215.pdf
dc.identifier.doi10.1111/gbi.12215
dc.identifier.sourceGeobiology
dc.identifier.citedreferencePaerl, H. W., Pinckney, J. L., & Steppe, T. F. ( 2000 ). Cyanobacterialâ bacterial mat consortia: Examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2, 11 â 26.
dc.identifier.citedreferenceMcMurdie, P. J., & Holmes, S. ( 2014 ). Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Computational Biology, 10, e1003531.
dc.identifier.citedreferenceMegonigal, J. P., Hines, M. E., & Visscher, P. T. ( 2004 ). Anaerobic metabolism: Linkages to trace gases and aerobic processes. In W. H. Schlesinger (Ed.), Biogeochemistry (pp. 317 â 424 ). Oxford, UK: Elsevierâ Pergamon.
dc.identifier.citedreferenceMurphy, J., & Riley, J. P. ( 1962 ). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31 â 36.
dc.identifier.citedreferenceNimick, D. A., Gammons, C. H., Cleasby, T. E., Madison, J. P., Skaar, D., & Brick, C. M. ( 2003 ). Diel cycles in dissolved metal concentrations in streams: Occurrence and possible causes. Water Resources Research, 39, 1247.
dc.identifier.citedreferenceNold, S. C., Bellecourt, M. J., Kendall, S. T., Ruberg, S. A., Sanders, T. G., Klump, J. V., & Biddanda, B. A. ( 2013 ). Underwater sinkhole sediments sequester Lake Huron’s carbon. Biogeochemistry, 115, 235 â 250.
dc.identifier.citedreferenceNold, S. C., Pangborn, J. B., Zajack, H. A., Kendall, S. T., Rediske, R. R., & Biddanda, B. A. ( 2010 ). Benthic bacterial diversity in submerged sinkhole ecosystems. Applied and Environmental Microbiology, 76, 347 â 351.
dc.identifier.citedreferenceNold, S. C., Zajack, H. A., & Biddanda, B. A. ( 2010 ). Eukaryal and archaeal diversity in a submerged sinkhole ecosystem influenced by sulfurâ rich, hypoxic groundwater. Journal of Great Lakes Research, 36, 366 â 375.
dc.identifier.citedreferenceFaith, D. P. ( 1992 ). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1 â 10.
dc.identifier.citedreferencePrice, M. N., Dehal, P. S., & Arkin, A. P. ( 2009 ). FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26, 1641 â 1650.
dc.identifier.citedreferencePruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. ( 2007 ). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35, 7188 â 7196.
dc.identifier.citedreferenceR Core Team ( 2015 ) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL https://www.R-project.org/
dc.identifier.citedreferenceRevsbech, N. P. ( 1989 ). An oxygen microsensor with a guard cathode. Limnology & Oceanography, 34, 474 â 478.
dc.identifier.citedreferenceRuberg, S. A., Coleman, D. F., Johengen, T. H., Meadows, G. A., VanSumeren, H. W., Lang, G. A., & Biddanda, B. A. ( 2005 ). Groundwater plume mapping in a submerged sinkhole in Lake Huron. Marine Technology Society Journal, 39, 65 â 69.
dc.identifier.citedreferenceRuberg, S. A., Kendall, S. T., Biddanda, B. A., Black, T., Nold, S. C., Lusardi, W. R., â ¦ Constant, S. A. ( 2008 ). Observations of the Middle Island Sinkhole in Lake Huron â A unique hydrogeologic and glacial creation of 400 million years. Marine Technology Society Journal, 42, 12 â 21.
dc.identifier.citedreferenceSanders, T. G. J., Biddanda, B. A., Stricker, C. A., & Nold, S. C. ( 2011 ). Benthic macroinvertebrate and fish communities in Lake Huron are linked to submerged groundwater vents. Aquatic Biology, 12, 1 â 12.
dc.identifier.citedreferenceSchlesinger, W. H., & Bernhardt, E. S. ( 2013 ). Biogeochemistry: An analysis of global change ( 3rd ed. ). Waltham, MA: Academic Press.
dc.identifier.citedreferenceSchloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., â ¦ Weber, C. F. ( 2009 ). Introducing mothur: Openâ source, platformâ independent, communityâ supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537 â 7541.
dc.identifier.citedreferenceStal, L. J. ( 1995 ). Tansley Review No. 84 Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist, 131, 1 â 32.
dc.identifier.citedreferenceSumner, D. Y., Hawes, I., Mackey, T. J., Jungblut, A. D., & Doran, P. T. ( 2015 ). Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases. Geology, 43, 887 â 890.
dc.identifier.citedreferenceVoorhies, A. A. ( 2014 ). Investigation of microbial interactions and ecosystem dynamics in a low O2 cyanobacterial mat. Doctoral dissertation, University of Michigan.
dc.identifier.citedreferenceVoorhies, A. A., Biddanda, B. A., Kendall, S. T., Jain, S., Marcus, D. N., Nold, S. C., â ¦ Dick, G. J. ( 2012 ). Cyanobacterial life at low O 2: Community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat. Geobiology, 10, 250 â 267.
dc.identifier.citedreferenceVoorhies, A. A., Eisenlord, S. D., Marcus, D. N., Duhaime, M. B., Biddanda, B. A., Cavalcoli, J. D., & Dick, G. J. ( 2016 ). Ecological and genetic interactions between cyanobacteria and viruses in a lowâ oxygen mat community inferred through metagenomics and metatranscriptomics. Environmental Microbiology, 18, 358 â 371.
dc.identifier.citedreferenceWang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. ( 2007 ). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261 â 5267.
dc.identifier.citedreferenceDecho, A. W. ( 1990 ). Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. Oceanography and Marine Biology Annual Review, 28, 73 â 153.
dc.identifier.citedreferenceDi Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. B., Mayr, S. M., & Redmond, M. S. ( 1990 ). Toxicity of cadmium in sediments: The role of acid volatile sulfide. Environmental Toxicology and Chemistry, 9, 1487 â 1502.
dc.identifier.citedreferenceEdgar, R. C. ( 2013 ). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996 â 998.
dc.identifier.citedreferenceAllen, H. E., Fu, G., Boothman, W., DiToro, D. M., & Mahoney, J. D. ( 1991 ). Determination of acid volatile sulfides (AVS) and simultaneously extracted metals in sediment: Draft analytical method for determination of acid volatile sulfide in sediment. Washington, DC: U.S. Environmental Protection Agency.
dc.identifier.citedreferenceAnders, S., & Huber, W. ( 2010 ). Differential expression analysis for sequence count data. Genome Biology, 11, R106.
dc.identifier.citedreferenceBalk, M., AltinbaÅ , M., Rijpstra, W. I. C., Damsté, J. S. S., & Stams, A. J. M. ( 2008 ). Desulfatirhabdium butyrativorans gen. nov., sp. nov., a butyrateâ oxidizing, sulfateâ reducing bacterium isolated from an anaerobic bioreactor. International Journal of Systematic and Evolutionary Microbiology, 58, 110 â 115.
dc.identifier.citedreferenceBates, S. T., Bergâ Lyons, D., Caporaso, J. G., Walters, W. A., Knight, R., & Fierer, N. ( 2011 ). Examining the global distribution of dominant archaeal populations in soil. The ISME Journal, 5, 908 â 917.
dc.identifier.citedreferenceBattin, T. J., Kaplan, L. A., Newbold, D. J., & Hansen, C. M. E. ( 2003 ). Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature, 426, 439 â 442.
dc.identifier.citedreferenceBenjamini, Y., & Hochberg, Y. ( 1995 ). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57, 289 â 300.
dc.identifier.citedreferenceBiddanda, B. A., Coleman, D. F., Johengen, T. H., Ruberg, S. A., Meadows, G. A., Van Sumeren, H. W., â ¦ Kendall, S. T. ( 2006 ). Exploration of a submerged sinkhole ecosystem in Lake Huron. Ecosystems, 9, 828 â 842.
dc.identifier.citedreferenceBiddanda, B. A., McMillan, A. C., Long, S. A., Snider, M. J., & Weinke, A. D. ( 2015 ). Seeking sunlight: Rapid phototactic motility of filamentous matâ forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron’s submerged sinkholes. Frontiers in Microbiology, 6, 1 â 13.
dc.identifier.citedreferenceBiddanda, B. A., Nold, S. C., Ruberg, S. A., Kendall, S. T., Sanders, T. G., & Gray, J. J. ( 2009 ). Great Lakes Sinkholes: A Microbiogeochemical Frontier. EOS, Transactions, American Geophysical Union, 90, 62 â 69.
dc.identifier.citedreferenceBoetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., â ¦ Pfannkuche, O. ( 2000 ). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623 â 626.
dc.identifier.citedreferenceBogorad, L. ( 1975 ). Phycobiliprotein: Complementary chromatic adaptation. Annual Review of Plant Physiology, 26, 369 â 401.
dc.identifier.citedreferenceCamacho, A., Vicente, E., & Miracle, M. R. ( 2000 ). Ecology of a deepâ living Oscillatoria (=Planktothrix) population in the sulphideâ rich waters of a Spanish karstic lake. Archiv fur Hydrobiologie, 148, 333 â 355.
dc.identifier.citedreferenceCanfield, D. E., & Des Marais, D. J. ( 1991 ). Aerobic sulfate reduction in microbial mats. Science, 251, 1471 â 1473.
dc.identifier.citedreferenceCanfield, D. E., & Des Marais, D. J. ( 1993 ). Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochimica et cosmochimica acta, 57, 3971 â 3984.
dc.identifier.citedreferenceCastelle, C. J., Wrighton, K. C., Thomas, B. C., Hug, L. A., Brown, C. T., Wilkins, M. J., â ¦ Banfield, J. F. ( 2015 ). Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Current Biology, 25, 690 â 701.
dc.identifier.citedreferenceClarke, K. R. ( 1993 ). Nonâ parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117 â 143.
dc.identifier.citedreferenceFinster, K., Liesack, W., & Thamdrup, B. ( 1998 ). Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Applied and Environmental Microbiology, 64, 119 â 125.
dc.identifier.citedreferenceFroelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., & Dauphin, P. ( 1979 ). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075 â 1090.
dc.identifier.citedreferenceHansel, C. M., Lentini, C. J., Tang, Y., Johnston, D. T., Wankel, S. D., & Jardine, P. M. ( 2015 ). Dominance of sulfurâ fueled iron oxide reduction in lowâ sulfate freshwater sediments. The ISME Journal, 9, 2400 â 2412.
dc.identifier.citedreferenceHansen, D., Di Toro, D. M., Berry, W., Boothman, W., McGrath, J., & Ankley, G. T. ( 2005 ). Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (cadmium, copper, lead, nickel, silver and zinc ). EPA 600/Râ 02/011. US Environmental Protection Agency, Washington, DC.
dc.identifier.citedreferenceHayes, J. M., & Waldbauer, J. R. ( 2006 ). The carbon cycle and associated redox processes through time. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 931 â 950.
dc.identifier.citedreferenceHoehler, T. M., Bebout, B. M., & Des Marais, D. J. ( 2001 ). The role of microbial mats in the production of reduced gases on the early Earth. Nature, 412, 324 â 327.
dc.identifier.citedreferenceJeroschewski, P., Steuckart, C., & Kühl, M. ( 1996 ). An amperometric microsensor for the determination of H 2 S in aquatic environments. Analytical Chemistry, 68, 4351 â 4357.
dc.identifier.citedreferenceKembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., â ¦ Webb, C. O. ( 2010 ). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463 â 1464.
dc.identifier.citedreferenceKinsmanâ Costello, L. E., O’Brien, J. M., & Hamilton, S. K. ( 2015 ). Natural stressors in uncontaminated sediments of shallow freshwaters: The prevalence of sulfide, ammonia, and reduced iron. Environmental Toxicology and Chemistry, 34, 467 â 479.
dc.identifier.citedreferenceKlatt, J. M., Haas, S., Yllmaz, P., de Beer, D., & Polerecky, L. ( 2015 ). Hydrogen sylfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs. Environmental Microbiology, 17, 3301 â 3313.
dc.identifier.citedreferenceKozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. ( 2013 ). Development of a dualâ index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79, 5112 â 5120.
dc.identifier.citedreferenceKromkamp, J. ( 1987 ). Formation and functional significance of storage products in cyanobacteria. New Zealand Journal of Marine and Freshwater Research, 21, 457 â 465.
dc.identifier.citedreferenceKühl, M., & Revsbech, N. P. ( 2001 ). Biogeochemical microsensors for boundary layer studies. In B. P. Boudrew, & B. B. Jørgensen (Eds.), The benthic boundary layer (pp. 180 â 210 ). New York, NY, USA: Oxford University Press.
dc.identifier.citedreferenceKuroda, K., Hatamoto, M., Nakahara, N., Abe, K., Takahashi, M., Araki, N., & Yamaguchi, T. ( 2015 ). Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge. Microbial Ecology, 69, 586 â 596.
dc.identifier.citedreferenceLalonde, S. V., & Konhauser, K. O. ( 2015 ). Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proceedings of the National Academy of Sciences, USA, 112, 995 â 1000.
dc.identifier.citedreferenceLuque, I., Zabulon, G., Contreras, A., & Houmard, J. ( 2001 ). Convergence of two global transcriptional regulators on nitrogen induction of the stressâ acclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942. Molecular Microbiology, 41, 937 â 947.
dc.identifier.citedreferenceMacalady, J. L., Lyon, E. H., Koffman, B., Albertson, L. K., Meyer, K., Galdenzi, S., & Mariani, S. ( 2006 ). Dominant microbial populations in limestoneâ corroding stream biofilms, Frasassi cave system, Italy. Applied and Environmental Microbiology, 72, 5596 â 5609.
dc.identifier.citedreferenceMatheron, R., & Caumette, P. ( 2015 ). Structure and functions of microorganisms: Production and use of material and energy. In J.â C. Bertrand, P. Caumette, P. Lebaron, R. Matheron, P. Normand, & T. Simeâ Ngando (Eds.), Environmental microbiology: Fundamentals and applications, (pp. 25 â 75 ). Dordrecht, the Netherlands: Springer.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.