Show simple item record

Molecular, dynamic, and structural origin of inhomogeneous magnetization transfer in lipid membranes

dc.contributor.authorSwanson, Scott D.
dc.contributor.authorMalyarenko, Dariya I.
dc.contributor.authorFabiilli, Mario L.
dc.contributor.authorWelsh, Robert C.
dc.contributor.authorNielsen, Jon‐fredrik
dc.contributor.authorSrinivasan, Ashok
dc.date.accessioned2017-04-13T20:36:03Z
dc.date.available2018-05-15T21:02:50Zen
dc.date.issued2017-03
dc.identifier.citationSwanson, Scott D.; Malyarenko, Dariya I.; Fabiilli, Mario L.; Welsh, Robert C.; Nielsen, Jon‐fredrik ; Srinivasan, Ashok (2017). "Molecular, dynamic, and structural origin of inhomogeneous magnetization transfer in lipid membranes." Magnetic Resonance in Medicine 77(3): 1318-1328.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/136337
dc.publisherClarendon Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlipid dynamics
dc.subject.othermagnetization transfer
dc.subject.othermyelin membrane
dc.subject.otherwhite matter
dc.titleMolecular, dynamic, and structural origin of inhomogeneous magnetization transfer in lipid membranes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136337/1/mrm26210.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136337/2/mrm26210_am.pdf
dc.identifier.doi10.1002/mrm.26210
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceYang H, Schleich T. Modified Jeener solidâ echo pulse sequences for the measurement of the proton dipolar spinâ lattice relaxationâ time (Tâ 1d) of tissue solidâ like macromolecular components. J Magn Reson Series B 1994; 105: 205 â 210.
dc.identifier.citedreferenceMorrison C, Stanisz G, Henkelman RM. Modeling magnetization transfer for biologicalâ like systems using a semisolid pool with a superâ Lorentzian lineshape and dipolar reservoir. J Magn Reson Series B 1995; 108: 103 â 113.
dc.identifier.citedreferenceVarma G, Girard OM, Prevost VH, Grant AK, Duhamel G, Alsop DC. Interpretation of magnetization transfer from inhomogeneously broadened lines (ihMT) in tissues as a dipolar order effect within motion restricted molecules. J Magn Reson 2015; 260: 67 â 76.
dc.identifier.citedreferenceClough S. Nuclear spin relaxation in a rotating tilted reference frame. Phys Rev 1967; 153: 355 â 357.
dc.identifier.citedreferenceMackay AL, Burnell EE, Nichol CP, Weeks G, Bloom M, Valic MI. Effect of viscosity on width of methylene proton magneticâ resonance line in sonicated phospholipid bilayer vesicles. FEBS Lett 1978; 88: 97 â 100.
dc.identifier.citedreferenceAlderman DW, Grant DM. Efficient decoupler coil design which reduces heating in conductive samples in superconducting spectrometers. J Magn Reson 1979; 36: 447 â 451.
dc.identifier.citedreferenceSwanson SD. Broadâ band excitation and detection of crossâ relaxation NMR spectra. J Magn Reson 1991; 95: 615 â 618.
dc.identifier.citedreferenceVold RL, Dickerson WH, Vold RR. Application of the Jeenerâ Broekaert pulse sequence to molecular dynamics studies in liquid crystals. J Magn Reson 1981; 43: 213 â 223.
dc.identifier.citedreferenceJeener J, Broekaert P. Nuclear magnetic resonance in solids: thermodynamic effects of a pair of RF pulses. Phys Rev 1967; 157: 232 â 240.
dc.identifier.citedreferenceResing HA. NMR relaxation in adamantane and hexamethylenetetramine: diffusion and rotation. Molecular Crystals and Liquid Crystals 1969; 9: 101 â 132.
dc.identifier.citedreferenceUeda T, Takeda S, Nakamura N, Chihara H. Molecular motion and phase changes in longâ chain solid normal alkanes as studied by Hâ 1 and Câ 13â NMR. Bulletin of the Chemical Society of Japan 1991; 64: 1299 â 1304.
dc.identifier.citedreferenceZamar RC, Mensio O. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach. J Chem Phys 2004; 121: 11927 â 11941.
dc.identifier.citedreferenceSiegel GJ, Albers RW, Brady ST, Price DL. Basic neurochemistry: molecular, cellular, and medical aspects. Burlington, London: Elsevier Academic; 2006. 992 p.
dc.identifier.citedreferenceLee AG. Lipidâ protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 2003; 1612: 1 â 40.
dc.identifier.citedreferenceSimons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569 â 572.
dc.identifier.citedreferenceKoenig SH, Brown RD, Ugolini R. Magnetization transfer in crossâ linked bovine serum albumin solutions at 200 MHz: a model for tissue. Magn Reson Med 1993; 29: 311 â 316.
dc.identifier.citedreferenceRedondoâ Morata L, Giannotti MI, Sanz F. Influence of cholesterol on the phase transition of lipid bilayers: a temperatureâ controlled force spectroscopy study. Langmuir 2012; 28: 12851 â 12860.
dc.identifier.citedreferenceUrbina JA, Moreno B, Arnold W, Taron CH, Orlean P, Oldfield E. A carbonâ 13 nuclear magnetic resonance spectroscopic study of interâ proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems. Biophys J 1998; 75: 1372 â 1383.
dc.identifier.citedreferenceDavis JH, Auger M, Hodges RS. High resolution Hâ 1 nuclear magnetic resonance of a transmembrane peptide. Biophys J 1995; 69: 1917 â 1932.
dc.identifier.citedreferenceTrouard TP, Nevzorov AA, Alam TM, Job C, Zajicek J, Brown MF. Influence of cholesterol on dynamics of dimyristoylphosphatidylcholine bilayers as studied by deuterium NMR relaxation. J Chem Phys 1999; 110: 8802 â 8818.
dc.identifier.citedreferenceGaspar R, Andrew ER, Bryant DJ, Cashell EM. Dipolar relaxation and slow molecular motions in solid proteins. Chem Phys Lett 1982; 86: 327 â 330.
dc.identifier.citedreferenceDanek AN, Bryant RG. Decay of dipolar order in diamagnetic and paramagnetic proteins and protein gels. J Magn Reson 2000; 143: 35 â 38.
dc.identifier.citedreferenceHenkelman RM, Huang XM, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative Interpretation of Magnetizationâ Transfer. Magn Reson Med 1993; 29: 759 â 766.
dc.identifier.citedreferenceFilippi M, Campi A, Dousset V, Baratti C, Martinelli V, Canal N, Scotti G, Comi G. A magnetization transfer imaging study of normalâ appearing white matter in multiple sclerosis. Neurology 1995; 45: 478 â 482.
dc.identifier.citedreferenceWolff SD, Balaban RS. Magnetization transfer contrast (Mtc) and tissue water proton relaxation in vivo. Magn Reson Med 1989; 10: 135 â 144.
dc.identifier.citedreferenceSled JG, Pike GB. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 2001; 46: 923 â 931.
dc.identifier.citedreferencevan Zijl PCM, Zhou J, Mori N, Payen JF, Wilson D, Mori S. Mechanism of magnetization transfer during onâ resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 2003; 49: 440 â 449.
dc.identifier.citedreferenceJanve VA, Zu Z, Yao Sâ Y, Li K, Zhang FL, Wilson KJ, Ou X, Does MD, Subramaniam S, Gochberg DF. The radial diffusivity and magnetization transfer pool size ratio are sensitive markers for demyelination in a rat model of type III multiple sclerosis (MS) lesions. Neuroimage 2013; 74: 298 â 305.
dc.identifier.citedreferenceTurati L, Moscatelli M, Mastropietro A, et al. In vivo quantitative magnetization transfer imaging correlates with histology during deâ and remyelination in cuprizoneâ treated mice. NMR Biomed 2015; 28: 327 â 337.
dc.identifier.citedreferenceAkasaka K. Longitudinal relaxation of protons under cross saturation and spin diffusion. J Magn Reson 1981; 45: 337 â 343.
dc.identifier.citedreferenceKalk A, Berendsen HJC. Proton magnetic relaxation and spin diffusion in proteins. J Magn Reson 1976; 24: 343 â 366.
dc.identifier.citedreferenceWennerstrom H. Proton nuclear magnetic resonance lineshapes in lamellar liquid crystals. Chem Phys Lett 1973; 18: 41 â 44.
dc.identifier.citedreferenceBrown MF. Deuterium relaxation and molecular dynamics in lipid bilayers. J Magn Reson 1979; 35: 203 â 215.
dc.identifier.citedreferenceBrown MF, Ribeiro AA, Williams GD. New view of lipid bilayer dynamics from Hâ 2 and Câ 13â NMR relaxationâ time measurements. Proc Natl Acad Sci U S A 1983; 80: 4325 â 4329.
dc.identifier.citedreferenceBrown MF, Nevzorov AA. Hâ 2â NMR in liquid crystals and membranes. Colloids Surf A Physicochem Eng Asp 1999; 158: 281 â 298.
dc.identifier.citedreferenceDavis JH. Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphatidylcholine. Biophys J 1979; 27: 339 â 358.
dc.identifier.citedreferenceDavis JH. The description of membrane lipid conformation, order and dynamics by Hâ 2â NMR. Biochim Biophys Acta 1983; 737: 117 â 171.
dc.identifier.citedreferenceObrien JS, Sampson EL. Fatty acid and fatty aldehyde composition of major brain lipids in normal human gray matter white matter and myelin. J Lipid Res 1965; 6: 545 â 551.
dc.identifier.citedreferenceObrien JS, Sampson EL. Lipid composition of normal human brainâ gray matter, white matter, and myelin. J Lipid Res 1965; 6: 537 â 545.
dc.identifier.citedreferenceKoenig SH. Cholesterol of myelin is the determinant of grayâ white contrast in MRI of brain. Magn Reson Med 1991; 20: 285 â 291.
dc.identifier.citedreferenceFralix TA, Ceckler TL, Wolff SD, Simon SA, Balaban RS. Lipid bilayer and water proton magnetization transfer: effect of cholesterol. Magn Reson Med 1991; 18: 214 â 223.
dc.identifier.citedreferenceCeckler TL, Wolff SD, Yip V, Simon SA, Balaban RS. Dynamic and chemical factors affecting water proton relaxation by macromolecules. J Magn Reson 1992; 98: 637 â 645.
dc.identifier.citedreferenceKucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM. Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 1994; 192: 521 â 529.
dc.identifier.citedreferenceForbes J, Husted C, Oldfield E. Highâ field, highâ resolution proton magicâ angle sampleâ spinning nuclear magneticâ resonance spectroscopic studies of gel and liquidâ crystalline lipid bilayers and the effects of cholesterol. J Am Chem Soc 1988; 110: 1059 â 1065.
dc.identifier.citedreferencePolozov IV, Gawrisch K. Characterization of the liquidâ ordered state by proton MAS NMR. Biophys J 2006; 90: 2051 â 2061.
dc.identifier.citedreferencePake GE. Nuclear resonance absorption in hydrated crystals: fine structure of the proton line. J Chem Phys 1948; 16: 327 â 336.
dc.identifier.citedreferenceVarma G, Duhamel G, de Bazelaire C, Alsop DC. Magnetization transfer from inhomogeneously broadened lines: a potential marker for myelin. Magn Reson Med 2015; 73: 614 â 622.
dc.identifier.citedreferenceGirard OM, Prevost VH, Varma G, Cozzone PJ, Alsop DC, Duhamel G. Magnetization transfer from inhomogeneously broadened lines (ihMT): experimental optimization of saturation parameters for human brain imaging at 1.5 Tesla. Magn Reson Med 2015; 73: 2111 â 2121.
dc.identifier.citedreferenceYeung HN, Adler RS, Swanson SD. Transient decay of longitudinal magnetization in heterogeneous spin systems under selective saturation. 4. Reformulation of the spin bath model equations by the Redfieldâ Provotorov theory. J Magn Reson Series A 1994; 106: 37 â 45.
dc.identifier.citedreferenceAdler RS, Swanson SD, Yeung HN. A threeâ component model for magnetization transfer. Solution by projectionâ operator technique, and application to cartilage. J Magn Reson Series B 1996; 110: 1 â 8.
dc.identifier.citedreferenceLee Jâ S, Khitrin AK, Regatte RR, Jerschow A. Uniform saturation of a strongly coupled spin system by twoâ frequency irradiation. J Chem Phys 2011; 134: 234504.
dc.identifier.citedreferenceLee Jâ S, Regatte RR, Jerschow A. Isolating chemical exchange saturation transfer contrast from magnetization transfer asymmetry under twoâ frequency rf irradiation. J Magn Reson 2012; 215: 56 â 63.
dc.identifier.citedreferenceProvotorov BN. Magnetic resonance saturation in crystals. Journal of Experimental and Theoretical Physics 1962; 14: 1126 â 1131.
dc.identifier.citedreferenceGoldman M. Spin temperature and nuclear magnetic resonance in solids. Oxford, UK: Clarendon Press; 1970. 246 p.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.