Show simple item record

Pulseq: A rapid and hardwareâ independent pulse sequence prototyping framework

dc.contributor.authorLayton, Kelvin J.
dc.contributor.authorKroboth, Stefan
dc.contributor.authorJia, Feng
dc.contributor.authorLittin, Sebastian
dc.contributor.authorYu, Huijun
dc.contributor.authorLeupold, Jochen
dc.contributor.authorNielsen, Jon‐fredrik
dc.contributor.authorStöcker, Tony
dc.contributor.authorZaitsev, Maxim
dc.date.accessioned2017-04-14T15:09:14Z
dc.date.available2018-05-15T21:02:50Zen
dc.date.issued2017-04
dc.identifier.citationLayton, Kelvin J.; Kroboth, Stefan; Jia, Feng; Littin, Sebastian; Yu, Huijun; Leupold, Jochen; Nielsen, Jon‐fredrik ; Stöcker, Tony ; Zaitsev, Maxim (2017). "Pulseq: A rapid and hardwareâ independent pulse sequence prototyping framework." Magnetic Resonance in Medicine 77(4): 1544-1552.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/136354
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPulseq
dc.subject.otherrapid development
dc.subject.otherplatform independent
dc.subject.otheropenâ source
dc.subject.otherpulse sequence programming
dc.titlePulseq: A rapid and hardwareâ independent pulse sequence prototyping framework
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136354/1/mrm26235.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136354/2/mrm26235_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136354/3/mrm26235-sup-0001-suppinfo.pdf
dc.identifier.doi10.1002/mrm.26235
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceLayton K, Kroboth S, Jia F, Littin S, Yu H, Zaitsev M. Improved reconstruction of nonlinear spatial encoding techniques with explicit intraâ voxel dephasing. In Proceedings of the 23rd Annual Meeting of ISMRM, Toronto, Canada, 2015. p. 98.
dc.identifier.citedreferenceJochimsen TH, von Mengershausen M. ODIN â Objectâ oriented development interface for NMR. J Magn Reson 2004; 170: 67.
dc.identifier.citedreferenceDebbins J, Gould K, Halleppanavar V, Polzin J, Radick M, Sat G, Thomas D, Trevino S, Haworth R. Novel software architecture for rapid development of magnetic resonance applications. Concepts Magn Reson 2002; 15: 216 â 237.
dc.identifier.citedreferenceMagland JF, Li C, Langham MC, Wehrli FW. Pulse sequence programming in a dynamic visual environment: SequenceTree. Magn Reson Med 2016; 75: 257 â 265.
dc.identifier.citedreferenceStang PP, Conolly SM, Santos JM, Pauly JM, Scott GC. Medusa: a scalable MR console using USB. IEEE Trans Med Imaging 2012; 31: 370 â 379.
dc.identifier.citedreferenceSharp JC, Yin D, Bernhardt RH, Deng Q, Procca AE, Tyson RL, Lo K, Tomanek B. The integration of real and virtual magnetic resonance imaging experiments in a single instrument. Rev Sci Instrum 2009; 80: 093709.
dc.identifier.citedreferenceOverall WR, Pauly JM. An extensible, graphical environment for pulse sequence design and simulation. In Proceedings of the ISMRM 15th Annual Meeting, Berlin, Germany, 2007. p. 1652.
dc.identifier.citedreferenceStöcker T, Vahedipour K, Pflugfelder D, Shah NJ. Highâ performance computing MRI simulations. Magn Reson Med 2010; 64: 186 â 193.
dc.identifier.citedreferenceHansen MS, Sørensen TS. Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 2013; 69: 1768 â 1776.
dc.identifier.citedreferenceHan F, Zhou Z, Sung K, Finn JP, and Hu P. A lowâ cost flexible nonâ linear parallelized MR image reconstruction system. In Proceedings of the 23rd Annual Meeting of ISMRM, Toronto, Canada, 2015. p. 2489.
dc.identifier.citedreferenceUecker M, Ong F, Tamir JI, Bahri D, Virtue P, Cheng JY, Zhang T, Lustig M. Berkeley Advanced Reconstruction Toolbox. In Proceedings of the 23rd Annual Meeting of ISMRM, Toronto, Canada, 2015. p. 2484.
dc.identifier.citedreferenceXiph.Org Foundation. FLAC: Free Lossless Audio Codec. Available at: xiph.org/flac/index.html, 2014. Accessed 12 February 2016.
dc.identifier.citedreferencePauly J. A kâ space analysis of smallâ tipâ angle excitation. J Magn Reson (1969) 1989; 81: 43 â 56.
dc.identifier.citedreferenceLayton KJ, Morelande M, Wright D, Farrell PM, Moran B, Johnston LA. Modelling and Estimation of Multicomponent T2 Distributions. IEEE Trans Med Imaging 2013; 32: 1423 â 1434.
dc.identifier.citedreferenceSharp J, Yin D, Tyson R, Lo K, Tomanek B. An Integrated MR Console/MR physics simulation system. In Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, USA, 2006. p. 1351.
dc.identifier.citedreferenceLatta P, Gruwel MLH, Jellúš V, Tomanek B. Bloch simulations with intraâ voxel spin dephasing. J Magn Reson 2010; 203: 44 â 51.
dc.identifier.citedreferenceTannus A, Garwood M. A diabatic pulses. NMR BioMed 1997; 10: 423 â 434.
dc.identifier.citedreferenceSchachter M, Does MD, Anderson aW, Gore JC. Measurements of restricted diffusion using an oscillating gradient spinâ echo sequence. J Magn Reson 2000; 147: 232 â 237.
dc.identifier.citedreferenceIdiyatullin D, Corum C, Park JY, Garwood M. Fast and quiet MRI using a swept radiofrequency. J Magn Reson 2006; 181: 342 â 349.
dc.identifier.citedreferenceHennel F, Girard F, Loenneker T. â Silentâ MRI with soft gradient pulses. Magn Reson Med 1999; 42: 6 â 10.
dc.identifier.citedreferenceLayton KJ, Kroboth S, Jia F, Littin S, Yu H, Zaitsev M. Trajectory optimization based on the signalâ toâ noise ratio for spatial encoding with nonlinear encoding fields. Magn Reson Med 2016;76:104â 117.
dc.identifier.citedreferenceMaclaren J, Herbst M, Speck O, Zaitsev M. Prospective motion correction in brain imaging: a review. Magn Reson Med 2013; 69: 621 â 636.
dc.identifier.citedreferenceWright SM, Brown DG, Porter JR, Spence DC, Esparza E, Cole DC, Huson FR. A desktop magnetic resonance imaging system. Magn Reson Mater Phys Biol Med 2002; 13: 177 â 185.
dc.identifier.citedreferenceHalse ME, Coy A, Dykstra R, Eccles C, Hunter M, Ward R, Callaghan PT. A practical and flexible implementation of 3D MRI in the Earth’s magnetic field. J Magn Reson 2006; 182: 75 â 83.
dc.identifier.citedreferenceCooley CZ, Stockmann JP, LaPierre C, et al. Implementation of lowâ cost, instructional tabletop MRI scanners. In Proceedings of the 22nd Annual Meeting of ISMRM, Milan, Italy, 2014. p. 4819.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.