Show simple item record

Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban‐industrial region near Pensacola, Florida, USA

dc.contributor.authorDemers, Jason D.
dc.contributor.authorSherman, Laura S.
dc.contributor.authorBlum, Joel D
dc.contributor.authorMarsik, Frank J.
dc.contributor.authorDvonch, J. Timothy
dc.date.accessioned2017-04-14T15:09:24Z
dc.date.available2017-04-14T15:09:24Z
dc.date.issued2015-10
dc.identifier.citationDemers, Jason D.; Sherman, Laura S.; Blum, Joel D.; Marsik, Frank J.; Dvonch, J. Timothy (2015). "Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban‐industrial region near Pensacola, Florida, USA." Global Biogeochemical Cycles 29(10): 1689-1705.
dc.identifier.issn0886-6236
dc.identifier.issn1944-9224
dc.identifier.urihttps://hdl.handle.net/2027.42/136364
dc.description.abstractIdentifying the anthropogenic and natural sources of mercury (Hg) emissions contributing to atmospheric mercury on local, regional, and global scales continues to be a grand challenge. The relative importance of various direct anthropogenic emissions of mercury, in addition to natural geologic sources and reemission of previously released and deposited mercury, differs regionally and temporally. In this study, we used local‐scale, mesoscale, and synoptic‐scale meteorological analysis to couple the isotopic composition of ambient atmospheric mercury with potential sources of mercury contributing to a coastal urban‐industrial setting near a coal‐fired power plant in Pensacola, Florida, USA. We were able to broadly discern four influences on the isotopic composition of ambient atmospheric mercury impacting this coastal urban‐industrial region: (1) local to regional urban‐industrial anthropogenic emissions (mean δ202Hg = 0.44 ± 0.05‰, 1SD, n = 3), (2) marine‐influenced sources derived from the Gulf of Mexico (mean δ202Hg = 0.77 ± 0.15‰, 1SD, n = 4), (3) continental sources associated with north‐northwesterly flows from within the planetary boundary layer (mean δ202Hg = 0.65 ± 0.04‰, 1SD, n = 3), and (4) continental sources associated with north‐northeasterly flows at higher altitudes (i.e., 2000 m above ground level; mean δ202Hg = 1.10 ± 0.21‰, 1SD, n = 8). Overall, these data, in conjunction with previous studies, suggest that the background global atmospheric mercury pool is characterized by moderately positive δ202Hg values; that urban‐industrial emissions drive the isotopic composition of ambient atmospheric mercury toward lower δ202Hg values; and that air‐surface exchange dynamics across vegetation and soils of terrestrial ecosystems drive the isotopic composition of ambient atmospheric mercury toward higher positive δ202Hg values. The data further suggest that mass‐independent fractionation (MIF) of both even‐mass‐ and odd‐mass‐number isotopes, likely generated by photochemical reactions in the atmosphere or during reemission from terrestrial and aquatic ecosystems, can be obscured by mixing with anthropogenic emissions having different MIF signatures.Key PointsIsotopic composition of TGM differed among meteorologically identified sourcesBackground atmospheric TGM displayed moderately positive δ202Hg valuesAnthropogenic emissions drive TGM isotopic composition to lower δ202Hg values
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othermass‐independent fractionation
dc.subject.othermercury isotopes
dc.subject.otheratmospheric mercury
dc.subject.otheranthropogenic emissions
dc.subject.othermeteorology
dc.subject.othermass‐dependent fractionation
dc.titleCoupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban‐industrial region near Pensacola, Florida, USA
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136364/1/gbc20349-sup-0001-Supplementary.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136364/2/gbc20349.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136364/3/gbc20349_am.pdf
dc.identifier.doi10.1002/2015GB005146
dc.identifier.sourceGlobal Biogeochemical Cycles
dc.identifier.citedreferenceSun, R. Y., L. E. Heimburger, J. E. Sonke, G. J. Liu, D. Amouroux, and S. Berail ( 2013 ), Mercury stable isotope fractionation in six utility boilers of two large coal‐fired power plants, Chem. Geol., 336, 103 – 111, doi: 10.1016/j.chemgeo.2012.10.055.
dc.identifier.citedreferenceRolison, J. M., W. M. Landing, W. Luke, M. Cohen, and V. J. M. Salters ( 2013 ), Isotopic composition of species‐specific atmospheric Hg in a coastal environment, Chem. Geol., 336, 37 – 49, doi: 10.1016/j.chemgeo.2012.10.007.
dc.identifier.citedreferenceSchroeder, W. H., and J. Munthe ( 1998 ), Atmospheric mercury: An overview, Atmos. Environ., 32, 809 – 822, doi: 10.1016/S1352-2310(97)00293-8.
dc.identifier.citedreferenceSelin, N. E. ( 2009 ), Global biogeochemical cycling of mercury: A review, Annu. Rev. Environ. Resour., 34, 43 – 63, doi: 10.1146/annurev.environ.051308.084314.
dc.identifier.citedreferenceSelin, N. E., and D. J. Jacob ( 2008 ), Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources, Atmos. Environ., 42, 5193 – 5204, doi: 10.1016/j.atmosenv.2008.02.069.
dc.identifier.citedreferenceSherman, L. S., J. D. Blum, G. J. Keeler, J. D. Demers, and J. T. Dvonch ( 2012 ), Investigation of local mercury deposition from a coal‐fired power plant using mercury isotopes, Environ. Sci. Technol., 46, 382 – 390, doi: 10.1021/es202793c.
dc.identifier.citedreferenceSherman, L. S., J. D. Blum, J. T. Dvonch, L. E. Gratz, and M. S. Landis ( 2015 ), The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution, Sci. Total Environ., 502, 362 – 374, doi: 10.1016/j.scitotenv.2014.09.034.
dc.identifier.citedreferenceSporl, R., L. Belo, K. Shah, R. Stanger, R. Giniyatullin, J. Maier, T. Wall, and G. Scheffknecht ( 2014 ), Mercury emissions and removal by ash in coal‐fired oxy‐fuel combustion, Energy Fuel, 28, 123 – 135, doi: 10.1021/ef4014604.
dc.identifier.citedreferenceSrivastava, R. K., N. Hutson, B. Martin, F. Princiotta, and J. Staudt ( 2006 ), Control of mercury emissions from coal‐fired in electric utility boilers, Environ. Sci. Technol., 40, 1385 – 1393, doi: 10.1021/es062639u.
dc.identifier.citedreferenceSun, R. Y., J. E. Sonke, L. E. Heimburger, H. E. Belkin, G. J. Liu, D. Shome, E. Cukrowska, C. Liousse, O. S. Pokrovsky, and D. G. Streets ( 2014 ), Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions, Environ. Sci. Technol., 48, 7660 – 7668, doi: 10.1021/es501208a.
dc.identifier.citedreferenceTelmer, K. M., and M. M. Veiga ( 2009 ), World emissions of mercury from artisanal and small scale gold mining, in Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models, pp. 131 – 172, Springer, New York, doi: 10.1007/978-0-387-93958-2_6.
dc.identifier.citedreferenceTicknor, J. L., H. Hsu‐Kim, and M. A. Deshusses ( 2014 ), A robust framework to predict mercury speciation in combustion flue gases, J. Hazard. Mater., 264, 380 – 385, doi: 10.1016/j.jhazmat.2013.10.052.
dc.identifier.citedreferenceUnited Nations Environment Program (UNEP) ( 2013 ), Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport, UNEP Chemicals Branch, Geneva, Switzerland.
dc.identifier.citedreferenceUnited States Energy Information Administration ( 2010 ), Monthly Utility and Nonutility Fuel Receipts and Fuel Quality Data, United States Energy Information Administration EIA‐923. [Available at http://www.eia.doe.gov/cneaf/electricity/page/eia423.html, Accessed June 2014.]
dc.identifier.citedreferenceU.S. Environmental Protection Agency ( 1998 ), Method 1631: Measurement of mercury in water: Revision E, U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division (4303), Washington, D. C.
dc.identifier.citedreferenceU.S. Environmental Protection Agency (USEPA) ( 2011a ), Electric generating utility mercury speciation profiles for the clear air mercury rule, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division, Emissions Inventory and Analysis Group., Research Triangle Park, N. C.
dc.identifier.citedreferenceU.S. Environmental Protection Agency (USEPA) ( 2011b ), National Emission Inventory (NEI). [Available at www.epa.gov/ttn/chief/net/2011inventory.html, Accessed May 2014.]
dc.identifier.citedreferenceU.S. Environmental Protection Agency ( 2014a ), Clean Air Markets: Air Markets Program Data. [Available at http://ampd.epa.gov/ampd, Accessed June 2014.]
dc.identifier.citedreferenceU.S. Environmental Protection Agency ( 2014b ), Mercury and Air Toxics Standards (MATS). [Available at www.epa.gov/airquality/powerplanttoxics/index.htm.]
dc.identifier.citedreferenceWang, Z., J. Chen, X. Feng, H. Hintelmann, S. Yuan, H. Cai, Q. Huang, S. Wang, and F. Wang ( 2015 ), Mass‐dependent and mass‐independent fractionation of mercury isotopes in precipitation from Guiyang, SW China, C. R. Geosci., doi: 10.1016/j.crte.2015.02.006.
dc.identifier.citedreferenceWilcox, J., E. Rupp, S. C. Ying, D. H. Lim, A. S. Negreira, A. Kirchofer, F. Feng, and K. Lee ( 2012 ), Mercury adsorption and oxidation in coal combustion and gasification processes, Int. J. Coal Geol., 90, 4 – 20, doi: 10.1016/j.coal.2011.12.003.
dc.identifier.citedreferenceZhang, H., R. S. Yin, X. B. Feng, J. Sommar, C. W. N. Anderson, A. Sapkota, X. W. Fu, and T. Larssen ( 2013a ), Atmospheric mercury inputs in montane soils increase with elevation: Evidence from mercury isotope signatures, Sci. Rep., 3, doi: 10.1038/srep03322.
dc.identifier.citedreferenceZhang, L., M. Daukoru, S. Torkamani, S. X. Wang, J. M. Hao, and P. Biswas ( 2013b ), Measurements of mercury speciation and fine particle size distribution on combustion of China coal seams, Fuel, 104, 732 – 738, doi: 10.1016/j.fuel.2012.06.069.
dc.identifier.citedreferenceZheng, W., and H. Hintelmann ( 2010a ), Isotope fractionation of mercury during its photochemical reduction by low‐molecular‐weight organic compounds, J. Phys. Chem. A, 114, 4246 – 4253, doi: 10.1021/jp9111348.
dc.identifier.citedreferenceZheng, W., and H. Hintelmann ( 2010b ), Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light, J. Phys. Chem. A, 114, 4238 – 4245, doi: 10.1021/jp910353y.
dc.identifier.citedreferenceAmos, H. M., D. J. Jacob, D. G. Streets, and E. M. Sunderland ( 2013 ), Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle, Global Biogeochem. Cycles, 27, 410 – 421, doi: 10.1002/gbc.20040.
dc.identifier.citedreferenceBergquist, B. A., and J. D. Blum ( 2007 ), Mass‐dependent and ‐independent fractionation of Hg isotopes by photoreduction in aquatic systems, Science, 318, 417 – 420, doi: 10.1126/science.1148050.
dc.identifier.citedreferenceBergquist, R. A., and J. D. Blum ( 2009 ), The odds and evens of mercury isotopes: Applications of mass‐dependent and mass‐independent isotope fractionation, Elements, 5, 353 – 357, doi: 10.2113/gselements.5.6.353.
dc.identifier.citedreferenceBiswas, A., J. D. Blum, B. A. Bergquist, G. J. Keeler, and Z. Q. Xie ( 2008 ), Natural mercury isotope variation in coal deposits and organic soils, Environ. Sci. Technol., 42, 8303 – 8309, doi: 10.1021/es801444b.
dc.identifier.citedreferenceBlum, J. D., and B. A. Bergquist ( 2007 ), Reporting of variations in the natural isotopic composition of mercury, Anal. Bioanal. Chem., 388, 353 – 359, doi: 10.1007/s00216-007-1236-9.
dc.identifier.citedreferenceBlum, J. D., L. S. Sherman, and M. W. Johnson ( 2014 ), Mercury isotopes in Earth and environmental sciences, Annu. Rev. Earth Planet. Sci., 42, 249 – 269, doi: 10.1146/annurev-earth-050212-124107.
dc.identifier.citedreferenceButler, T. J., M. D. Cohen, F. M. Vermeylen, G. E. Likens, D. Schmeltz, and R. S. Artz ( 2008 ), Regional precipitation mercury trends in the eastern USA, 1998–2005: Declines in the Northeast and Midwest, no trend in the Southeast, Atmos. Environ., 42, 1582 – 1592, doi: 10.1016/j.atmosenv.2007.10.084.
dc.identifier.citedreferenceCarpi, A. ( 1997 ), Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere, Water, Air, Soil Pollut., 98, 241 – 254, doi: 10.1007/BF02047037.
dc.identifier.citedreferenceChen, J. B., H. Hintelmann, X. B. Feng, and B. Dimock ( 2012 ), Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada, Geochim. Cosmochim. Acta, 90, 33 – 46, doi: 10.1016/j.gca.2012.05.005.
dc.identifier.citedreferenceDemers, J. D., J. D. Blum, and D. R. Zak ( 2013 ), Mercury isotopes in a forested ecosystem: Implications for air‐surface exchange dynamics and the global mercury cycle, Global Biogeochem. Cycles, 27, 222 – 238, doi: 10.1002/gbc.20021.
dc.identifier.citedreferenceDraxler, R. R., and G. D. Rolph ( 2010 ), HYSPLIT (HYbrid Single‐Particle Langrangian Integrated Trajectory) Model, National Oceanographic and Atmospheric Science Administration, Air Resources Laboratory website http://ready.arl.noaa.gov/HYSPLIT.php, NOAA Air Resources Laboratory, College Park, Md., Accessed July 2014.
dc.identifier.citedreferenceDvonch, J. T., J. R. Graney, G. J. Keeler, and R. K. Stevens ( 1999 ), Use of elemental tracers to source apportion mercury in South Florida precipitation, Environ. Sci. Technol., 33, 4522 – 4527, doi: 10.1021/es9903678.
dc.identifier.citedreferenceDvonch, J. T., G. J. Keeler, and F. J. Marsik ( 2005 ), The influence of meteorological conditions on the wet deposition of mercury in southern Florida, J. Appl. Meteorol., 44, 1421 – 1435, doi: 10.1175/JAM2272.1.
dc.identifier.citedreferenceEstrade, N., J. Carignan, J. E. Sonke, and O. F. X. Donard ( 2009 ), Mercury isotope fractionation during liquid–vapor evaporation experiments, Geochim. Cosmochim. Acta, 73, 2693 – 2711, doi: 10.1016/j.gca.2009.01.024.
dc.identifier.citedreferenceFu, X. W., L. E. Heimburger, and J. E. Sonke ( 2014 ), Collection of atmospheric gaseous mercury for stable isotope analysis using iodine‐ and chlorine‐impregnated activated carbon traps, J. Anal. Atom. Spectrom., 29, 841 – 852, doi: 10.1039/c3ja50356a.
dc.identifier.citedreferenceGhosh, S., E. A. Schauble, G. Couloume, J. D. Blum, and B. A. Bergquist ( 2013 ), Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid‐vapor evaporation experiments, Chem. Geol., doi: 10.1016/j.chemgeo.2012.01.008.
dc.identifier.citedreferenceGraney, J. R., J. T. Dvonch, and G. J. Keeler ( 2004 ), Use of multi‐element tracers to source apportion mercury in South Florida aerosols, Atmos. Environ., 38, 1715 – 1726, doi: 10.1016/j.atmosenv.2003.12.018.
dc.identifier.citedreferenceGratz, L. E., and G. J. Keeler ( 2011 ), Sources of mercury in precipitation to Underhill, VT, Atmos. Environ., 45, 5440 – 5449, doi: 10.1016/j.atmosenv.2011.07.001.
dc.identifier.citedreferenceGratz, L. E., G. J. Keeler, J. D. Blum, and L. S. Sherman ( 2010 ), Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air, Environ. Sci. Technol., 44, 7764 – 7770, doi: 10.1021/es100383w.
dc.identifier.citedreferenceGratz, L. E., G. J. Keeler, F. J. Marsik, J. A. Barres, and J. T. Dvonch ( 2013a ), Atmospheric transport of speciated mercury across southern Lake Michigan: Influence from emission sources in the Chicago/Gary urban area, Sci. Total Environ., 448, 84 – 95, doi: 10.1016/j.scitotenv.2012.08.076.
dc.identifier.citedreferenceGratz, L. E., G. J. Keeler, M. Morishita, J. A. Barres, and J. T. Dvonch ( 2013b ), Assessing the emission sources of atmospheric mercury in wet deposition across Illinois, Sci. Total Environ., 448, 120 – 131, doi: 10.1016/j.scitotenv.2012.11.011.
dc.identifier.citedreferenceKeeler, G., G. Glinsorn, and N. Pirrone ( 1995 ), Particulate mercury in the atmosphere: Its significance, transport, transformation and sources, Water, Air, Soil Pollut., 80, 159 – 168, doi: 10.1007/BF01189664.
dc.identifier.citedreferenceLandis, M. S., and G. J. Keeler ( 2002 ), Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study, Environ. Sci. Technol., 36, 4518 – 4524, doi: 10.1021/es011217b.
dc.identifier.citedreferenceLandis, M. S., J. V. Ryan, A. F. H. ter Schure, and D. Laudal ( 2014 ), Behavior of mercury emissions from a commercial coal‐fired power plant: The relationship between stack speciation and near‐field plume measurements, Environ. Sci. Technol., 48, 13,540 – 13,548, doi: 10.1021/es500783t.
dc.identifier.citedreferenceLindberg, S. E., and W. J. Stratton ( 1998 ), Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air, Environ. Sci. Technol., 32, 49 – 57, doi: 10.1021/es970546u.
dc.identifier.citedreferenceMead, C., J. R. Lyons, T. M. Johnson, and A. D. Anbar ( 2013 ), Unique Hg stable isotope signatures of compact fluorescent lamp‐sourced Hg, Environ. Sci. Technol., 47, 2542 – 2547, doi: 10.1021/es303940p.
dc.identifier.citedreferenceNOAA ( 2014a ), National Climate Data Center, Climate Data Online. [Available at http://ncdc.noaa.gov/cdo‐web, Accessed June 2014.]
dc.identifier.citedreferenceNOAA ( 2014b ), National Weather Service, National Centers for Environmental Prediction, Hydrometeorological Prediction Center. [Availble at http://www.wpc.ncep.noaa.gov/dailywxmap/index.html, Accessed June 2014.]
dc.identifier.citedreferenceNOAA ( 2014c ), National Weather Service, NWS DIFAX Weather Map Archive. [Available at http://archive.atmos.colostate.edu. Accessed June 2014.]
dc.identifier.citedreferencePacyna, E. G., J. M. Pacyna, F. Steenhuisen, and S. Wilson ( 2006 ), Global anthropogenic mercury emission inventory for 2000, Atmos. Environ., 40, 4048 – 4063, doi: 10.1016/j.atmosenv.2006.03.041.
dc.identifier.citedreferencePirrone, N., et al. ( 2009 ), Global mercury emissions to the atmosphere from natural and anthropogenic sources, in Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models, pp. 3 – 49, Springer, New York, doi: 10.1007/978-0-387-93958-2_1.
dc.identifier.citedreferencePirrone, N., et al. ( 2010 ), Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmos. Chem. Phys., 10, 5951 – 5964, doi: 10.5194/acp-10-5951-2010.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.