Show simple item record

Statistical image‐domain multimaterial decomposition for dual‐energy CT

dc.contributor.authorXue, Yi
dc.contributor.authorRuan, Ruoshui
dc.contributor.authorHu, Xiuhua
dc.contributor.authorKuang, Yu
dc.contributor.authorWang, Jing
dc.contributor.authorLong, Yong
dc.contributor.authorNiu, Tianye
dc.date.accessioned2017-04-14T15:09:28Z
dc.date.available2018-05-04T20:56:58Zen
dc.date.issued2017-03
dc.identifier.citationXue, Yi; Ruan, Ruoshui; Hu, Xiuhua; Kuang, Yu; Wang, Jing; Long, Yong; Niu, Tianye (2017). "Statistical image‐domain multimaterial decomposition for dual‐energy CT." Medical Physics (3): 886-901.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/136366
dc.publisherSPIE Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdual‐energy CT (DECT)
dc.subject.otherimage‐domain
dc.subject.othermulti‐material decomposition (MMD)
dc.subject.othernoise suppression
dc.subject.otheroptimization transfer
dc.subject.otherpenalized weighted least‐square (PWLS)
dc.titleStatistical image‐domain multimaterial decomposition for dual‐energy CT
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136366/1/mp12096.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136366/2/mp12096_am.pdf
dc.identifier.doi10.1002/mp.12096
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceKeerthi SS, Gilbert EG. Convergence of a generalized SMO algorithm for SVM classifier design. Mach Learn. 2002; 46: 351 – 360.
dc.identifier.citedreferenceSiemens. ( https://bps-healthcare.siemens.com/cv_oem/radIn.asp ).
dc.identifier.citedreferencePetersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol. 2008; 68: 362 – 368.
dc.identifier.citedreferenceRafecas M, Boning G, Pichler BJ, Lorenz E. A Monte Carlo study of high‐resolution PET with granulated dual‐layer detectors. Nucl Sci IEEE Trans. 2001; 48: 1490 – 1495.
dc.identifier.citedreferenceFoygel BR, Sidky EY, Gilat ST, Pan X. An algorithm for constrained one‐step inversion of spectral CT data. Phys Med Biol. 2015; 61: 3784 – 3818.
dc.identifier.citedreferenceSidky EY, Zou Y, Pan X. Impact of polychromatic x‐ray sources on helical, cone‐beam computed tomography and dual‐energy methods. Phys Med Biol. 2004; 49: 2293 – 2303.
dc.identifier.citedreferenceHarms J, Wang T, Petrongolo M, Niu T, Zhu L. Noise suppression for dual‐energy CT via penalized weighted least‐square optimization with similarity‐based regularization. Med Phys. 2016; 43: 2676 – 2686.
dc.identifier.citedreferencePetrongolo M, Dong X, Zhu L. A general framework of noise suppression in material decomposition for dual‐energy CT. Med Phys. 2015; 422015.
dc.identifier.citedreferenceZhang R, Thibault JB, Bouman C, Sauer K, Hsieh J. Model‐based iterative reconstruction for dual‐energy X‐Ray CT using a joint quadratic likelihood model. IEEE Trans Med Imaging. 2013; 33: 117 – 134.
dc.identifier.citedreferenceDe Pierro AR. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Trans Med Imaging. 1995; 14: 132 – 137.
dc.identifier.citedreferenceErdoğan H, Fessler JA. Monotonic algorithms for transmission tomography. IEEE Trans Med Imaging. 1999; 18: 801 – 814.
dc.identifier.citedreferenceJacobson MW, Fessler JA. An expanded theoretical treatment of iteration‐dependent majorize‐minimize algorithms. IEEE Trans Image Process. 2007; 16: 2411 – 2422.
dc.identifier.citedreferenceIijima Y, Murakawa M, Kasai Y, Takahashi E, Higuchi T. Optimization transfer using surrogate objective functions. J Comput Graph Stat. 2012; 9: 1 – 20.
dc.identifier.citedreferenceErdogan H, Fessler JA. Ordered subsets algorithms for transmission tomography. Phys Med Biol. 1999; 44: 2835 – 2851.
dc.identifier.citedreferenceFessler JA. Statistical image reconstruction methods for transmission tomography. In: Sonka M and Fitzpatric JM, eds. Medical Image Processing and Analysis. Vol. 3. Bellingham, WA: SPIE Press, 2000; 1 – 70.
dc.identifier.citedreferenceHuber PJ. Robust Statistics. Berlin Heidelberg: Springer; 2011.
dc.identifier.citedreferenceNIST. X‐Ray Mass Attenuation Coefficients. ( https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients ).
dc.identifier.citedreferenceKak AC, Slaney M. Principles of computerized tomographic imaging. Philadelphia: Society for Industrial and Applied Mathematics; 2001.
dc.identifier.citedreferenceNatterer F. The mathematics of computerized tomography. Teubner BG. Philadeiphia: Society for Industrial and Applied Mathematics. 2001.
dc.identifier.citedreferenceNiu T, Sun M, Starlack J, Gao H, Fan Q, Zhu L. Shading correction for on‐board cone‐beam CT in radiation therapy using planning MDCT images. Med Phys. 2010; 37: 5395 – 5406.
dc.identifier.citedreferenceJohns PC, Yaffe MJ. Theoretical optimization of dual‐energy x‐ray imaging with application to mammography. Med Phys. 1985; 12: 289 – 296.
dc.identifier.citedreferenceRutherford RA, Pullan BR, Isherwood I. X‐ray energies for effective atomic number determination. Neuroradiology. 1976; 11: 23 – 28.
dc.identifier.citedreferencePetrongolo M, Zhu L. Noise suppression for dual‐energy CT through entropy minimization. IEEE Trans Med Imaging. 2015; 34: 2646 – 2646.
dc.identifier.citedreferenceRichard S, Husarik DB, Yadava G, Murphy SN, Samei E. Towards task‐based assessment of CT performance: system and object MTF across different reconstruction algorithms. Med Phys. 2012; 39: 4115 – 4122.
dc.identifier.citedreferenceSamei E, Flynn MJ, Reimann DA. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med Phys. 1998; 25: 102 – 113.
dc.identifier.citedreferenceRigie DS, La Rivière PJ. Joint reconstruction of multi‐channel, spectral CT data via constrained total nuclear variation minimization. Phys Med Biol. 2015; 60: 1741 – 1762.
dc.identifier.citedreferenceWunderlich A, Noo F. Image covariance and lesion detectability in direct fan‐beam x‐ray computed tomography. Phys Med Biol. 2008; 53: 2471 – 2493.
dc.identifier.citedreferenceLi Z, Yu L, Trzasko JD, et al. Adaptive nonlocal means filtering based on local noise level for CT denoising. Med Phys. 2014; 41: 011908 – 011908.
dc.identifier.citedreferenceBhotika R, Thomsen B. Multi‐material decomposition of spectral CT images. Proc. SPIE. 2010; 7622: 640 – 643.
dc.identifier.citedreferenceMendonca PR, Lamb P, Sahani DV. A flexible method for multi‐material decomposition of dual‐energy CT images. IEEE Trans Med Imaging. 2014; 33: 99 – 116.
dc.identifier.citedreferenceLong Y, Fessler JA. Multi‐material decomposition using statistical image reconstruction for spectral CT. IEEE Trans Med Imaging. 2014; 33: 1614 – 1626.
dc.identifier.citedreferenceNiu T, Dong X, Petrongolo M, Zhu L. Iterative image‐domain decomposition for dual‐energy CT. Med Phys. 2014; 41: 041901.
dc.identifier.citedreferenceAlvarez RE, Macovski A. Energy‐selective reconstructions in X‐ray computerized tomography. Phys Med Biol. 1976; 21: 733 – 744.
dc.identifier.citedreferenceAlvarez RE, Macovski A. X‐ray spectral decomposition imaging system. U.S. Patent 4 029 963 1977.
dc.identifier.citedreferenceMacovski A, Alvarez RE, Chan JL, Stonestrom JP, Zatz LM. Energy dependent reconstruction in X‐ray computerized tomography. Comput Biol Med. 1976; 6: 325 – 336.
dc.identifier.citedreferenceJr MW, Alvarez RE, Macovski A. Initial results with prereconstruction dual‐energy computed tomography (PREDECT). Radiology. 1981; 140: 421 – 430.
dc.identifier.citedreferenceStonestrom JP, Alvarez RE, Macovski A. A framework for spectral artifact corrections in x‐ray CT. IEEE Trans Biomed Eng. 1981; 28: 128 – 141.
dc.identifier.citedreferenceLaidevant AD, Malkov S, Flowers CI, Kerlikowske K, Shepherd JA. Compositional breast imaging using a dual‐energy mammography protocol. Med Phys. 2010; 37: 164 – 174.
dc.identifier.citedreferenceLiu X, Yu L, Primak AN, Mccollough CH. Quantitative imaging of element composition and mass fraction using dual‐energy CT: Three‐material decomposition. Med Phys. 2009; 36: 1602 – 1609.
dc.identifier.citedreferenceHuh W, Fessler JA. Model‐based image reconstruction for dual‐energy X‐ray CT with fast KVP switching. Proceedings. 2009; 326 – 329.
dc.identifier.citedreferenceJohnson T, Fink C, Schönberg SO, Reiser MF. Dual energy CT in clinical practice. Med Phys. 2011; 38: 6346 – 6346.
dc.identifier.citedreferenceMccollough CH, Primak AN, Saba O, et al. Dose performance of a 64‐channel dual‐source CT scanner. Radiology. 2007; 243: 775 – 784.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.