Show simple item record

Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A time‐dependent MHD study

dc.contributor.authorMa, Y. J.
dc.contributor.authorRussell, C. T.
dc.contributor.authorFang, X.
dc.contributor.authorDong, C. F.
dc.contributor.authorNagy, A. F.
dc.contributor.authorToth, G.
dc.contributor.authorHalekas, J. S.
dc.contributor.authorConnerney, J. E. P.
dc.contributor.authorEspley, J. R.
dc.contributor.authorMahaffy, P. R.
dc.contributor.authorBenna, M.
dc.contributor.authorMcFadden, J.
dc.contributor.authorMitchell, D. L.
dc.contributor.authorAndersson, L.
dc.contributor.authorJakosky, B. M.
dc.date.accessioned2017-04-14T15:09:44Z
dc.date.available2018-04-02T18:03:24Zen
dc.date.issued2017-02
dc.identifier.citationMa, Y. J.; Russell, C. T.; Fang, X.; Dong, C. F.; Nagy, A. F.; Toth, G.; Halekas, J. S.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.; McFadden, J.; Mitchell, D. L.; Andersson, L.; Jakosky, B. M. (2017). "Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A time‐dependent MHD study." Journal of Geophysical Research: Space Physics 122(2): 1714-1730.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/136382
dc.description.abstractThe Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft observed a strong interplanetary coronal mass ejection (ICME) impacting Mars on 8 March 2015. We use a time‐dependent global MHD model to investigate the response of the Martian ionosphere and induced magnetosphere to the large solar wind disturbance associated with the ICME. Taking observed upstream solar wind conditions from MAVEN as inputs to the MHD model, the variations of the Martian plasma environments are simulated realistically in a time period from 2.5 h prior to the arrival of the ICME shock to about 12 h after the impact. Detailed comparisons between the model results and the relevant MAVEN plasma measurements are presented, which clearly show that the time‐dependent multispecies single‐fluid MHD model is able to reproduce the main features observed by the spacecraft during the ICME passage. Model results suggest that the induced magnetosphere responds to solar wind variation on a very short time scale (approximately minutes). The variations of the plasma boundaries’ distances from the planet along the subsolar line are examined in detail, which show a clear anticorrelation with the magnetosonic Mach number. Plasma properties in the ionosphere (especially the induced magnetic field) varied rapidly with solar wind changes. Model results also show that ion escape rates could be enhanced by an order of magnitude in response to the high solar wind dynamic pressure during the ICME event.Key PointsA time‐dependent MHD model is used to quantify the impact of a strong ICME on MarsPlasma environment varied rapidly in response to the solar wind disturbancesIon escape rates were enhanced by more than an order of magnitude during the ICME event
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMars
dc.subject.otherMHD
dc.subject.otherICME
dc.titleVariations of the Martian plasma environment during the ICME passage on 8 March 2015: A time‐dependent MHD study
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136382/1/jgra53284.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136382/2/jgra53284_am.pdf
dc.identifier.doi10.1002/2016JA023402
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMa, Y. J., X. Fang, A. F. Nagy, C. T. Russell, and G. Toth ( 2014 ), Martian ionospheric responses to dynamic pressure enhancements in the solar wind, J. Geophys. Res. Space Physics, 119, 1272 – 1286, doi: 10.1002/2013JA019402.
dc.identifier.citedreferenceEdberg, N. J. T., M. Lester, S. W. H. Cowley, D. A. Brain, M. Fränz, and S. Barabash ( 2010 ), Magnetosonic Mach number effect of the position of the bow shock at Mars in comparison to Venus, J. Geophys. Res., 115, A07203, doi: 10.1029/2009JA014998.
dc.identifier.citedreferenceEdberg, N. J. T., et al. ( 2011 ), Atmospheric erosion of Venus during stormy space weather, J. Geophys. Res., 116, A09308, doi: 10.1029/2011JA016749.
dc.identifier.citedreferenceFallows, K., P. Withers, and G. Gonzalez ( 2015 ), Response of the Mars ionosphere to solar flares: Analysis of MGS radio occultation data, J. Geophys. Res. Space Physics, 120, 9805 – 9825, doi: 10.1002/2015JA021108.
dc.identifier.citedreferenceGopalswamy, N. ( 2006 ), Properties of interplanetary coronal mass ejections, Space Sci. Rev., 124, 145 – 168, doi: 10.1007/s11214-006-9102-1.
dc.identifier.citedreferenceGosling, J., D. McComas, J. Phillips, and S. Bame ( 1991 ), Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 96 ( A5 ), 7831 – 7839, doi: 10.1029/91JA00316.
dc.identifier.citedreferenceHaider, S. A., M. A. Abdu, I. S. Batista, J. H. Sobral, E. Kallio, W. C. Maguire, and M. I. Verigin ( 2009 ), On the responses to solar X‐ray flare and coronal mass ejection in the ionospheres of Mars and Earth, Geophys. Res. Lett., 36, L13104, doi: 10.1029/2009GL038694.
dc.identifier.citedreferenceHalekas, J., E. Taylor, G. Dalton, G. Johnson, D. Curtis, J. McFadden, D. Mitchell, R. Lin, and B. Jakosky ( 2015 ), The solar wind ion analyzer for MAVEN, Space Sci. Rev., 195, 125 – 151, doi: 10.1007/s11214-013-0029-z.
dc.identifier.citedreferenceHara, T., et al. ( 2016 ), MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015, Geophys. Res. Lett., 43, 4816 – 4824, doi: 10.1002/2016GL068960.
dc.identifier.citedreferenceJakosky, B. M., et al. ( 2015a ), The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, Space Sci. Rev., 195, 3 – 48, doi: 10.1007/s11214-015-0139-x.
dc.identifier.citedreferenceJakosky, B. M., et al ( 2015b ), MAVEN observations of the response of Mars to an interplanetary coronal mass ejection, Science, 350, aad0210‐1‐aad0210‐7, doi: 10.1126/science.aad0210.
dc.identifier.citedreferenceJian, L. K., C. T. Russell, J. G. Luhmann, R. M. Skoug, and J. T. Steinberg ( 2008 ), Stream interactions and interplanetary coronal mass ejections at 5.3 AU near the solar ecliptic plane, Sol. Phys., 250, 375 – 402, doi: 10.1007/s11207-008-9204-x.
dc.identifier.citedreferenceLuhmann, J. G., W. T. Kasprzak, and C. T. Russell ( 2007 ), Space weather at Venus and its potential consequences for atmosphere evolution, J. Geophys. Res., 112, E04S10, doi: 10.1029/2006JE002820.
dc.identifier.citedreferenceLuhmann, J. G., et al. ( 2008 ), Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections, J. Geophys. Res., 113, E00B04, doi: 10.1029/2008JE003092.
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Holmström, H. Nilsson, Y. Futaana, R. Ramstad, M. Yamauchi, E. Dubinin, and M. Fraenz ( 2013 ), Solar cycle effects on the ion escape from Mars, Geophys. Res. Lett., 40, 6028 – 6032, doi: 10.1002/2013GL058154.
dc.identifier.citedreferenceMa, Y., A. F. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004 ), Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi: 10.1029/2003JA010367.
dc.identifier.citedreferenceMa, Y., X. Fang, C. T. Russell, A. F. Nagy, G. Toth, J. G. Luhmann, D. A. Brain, and C. Dong ( 2014 ), Effects of crustal field rotation on the solar wind plasma interaction with Mars, Geophys. Res. Lett., 41, 6563 – 6569, doi: 10.1002/2014GL060785.
dc.identifier.citedreferenceMa, Y. J., et al. ( 2015 ), MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations, Geophys. Res. Lett., 42, 9113 – 9120, doi: 10.1002/2015GL065218.
dc.identifier.citedreferenceMa, Y.‐J., and A. F. Nagy ( 2007 ), Ion escape fluxes from Mars, Geophys. Res. Lett., 34, L08201, doi: 10.1029/2006GL029208.
dc.identifier.citedreferenceMahaffy, P. R., et al. ( 2014 ), The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution mission, Space Sci. Rev., 195, 49 – 73, doi: 10.1007/s11214-014-0091-1.
dc.identifier.citedreferenceMcFadden, J., et al. ( 2015 ), The MAVEN Suprathermal and Thermal Ion Composition (STATIC) instrument, Space Sci. Rev., 195, 199, doi: 10.1007/s11214-015-0175-6.
dc.identifier.citedreferenceMitchell, D. L., et al. ( 2016 ), The MAVEN Solar Wind Electron Analyzer, Space Sci. Rev., 200, 495 – 528, doi: 10.1007/s11214-015-0232-1.
dc.identifier.citedreferenceModolo, R., G. M. Chanteur, and E. Dubinin ( 2012 ), Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF, Geophys. Res. Lett., 39, L01106, doi: 10.1029/2011GL049895.
dc.identifier.citedreferenceMorgan, D. D., et al. ( 2014 ), Effects of a strong ICME on the Martian ionosphere as detected by Mars Express and Mars Odyssey, J. Geophys. Res. Space Physics, 119, 5891 – 5908, doi: 10.1002/2013JA019522.
dc.identifier.citedreferenceOpgenoorth, H. J., D. J. Andrews, M. Fränz, M. Lester, N. J. T. Edberg, D. Morgan, F. Duru, O. Witasse, and A. O. Williams ( 2013 ), Mars ionospheric response to solar wind variability, J. Geophys. Res. Space Physics, 118, 6558 – 6587, doi: 10.1002/jgra.50537.
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. DeZeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comp. Phys., 154, 284 – 309, doi: 10.1006/jcph.1999.6299.
dc.identifier.citedreferenceRibas, I., E. Guinan, M. Gudel, and M. Audard ( 2005 ), Evolution of the solar activity over time and effects on planetary atmospheres. I. High‐energy irradiances (1–1700 Å), Astrophys. J., 622, 680 – 694, doi: 10.1086/427977.
dc.identifier.citedreferenceSrivastava, N., and P. Venkatakrishnan ( 2004 ), Solar and interplanetary sources of major geomagnetic storms during 1996–2002, J. Geophys. Res., 109, A10103, doi: 10.1029/2003JA010175.
dc.identifier.citedreferenceToth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231 ( 3 ), 870 – 903, doi: 10.1016/j.jcp.2011.02.006.
dc.identifier.citedreferenceTsurutani, B., and W. Gonzalez ( 1997 ), The interplanetary causes of magnetic storms: A review, in Magnetic Storms, vol. 98, edited by B. Tsurutani et al., pp. 77 – 89, Geophys. Mon. Series, Washington, D. C.
dc.identifier.citedreferenceWood, B. E., H.‐R. Muller, G. P. Zank, J. L. Linsky, and S. Redfield ( 2005 ), New mass‐loss measurements from astrospheric Lya absorption, Astrophys. J., 628 (August), L143 – L146, doi: 10.1086/432716.
dc.identifier.citedreferenceFang, X., S. W. Bougher, R. E. Johnson, J. G. Luhmann, Y. Ma, Y.‐C. Wang, and M. W. Liemohn ( 2013 ), The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions, Geophys. Res. Lett., 40, 1922 – 1927, doi: 10.1002/grl.50415.
dc.identifier.citedreferenceFang, X., Y. Ma, D. Brain, Y. Dong, and R. Lillis ( 2015 ), Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time‐dependent MHD study, J. Geophys. Res. Space Physics, 120, 926 – 10,944, doi: 10.1002/2015JA021605.
dc.identifier.citedreferenceFutaana, Y., et al. ( 2008 ), Mars Express and Venus Express multi‐point observations of geoeffective solar flare events in December 2006, Planet. Space Sci., 56 ( 6 ), 873 – 880, doi: 10.1016/j.pss.2007.10.014.
dc.identifier.citedreferenceGonzalez, W., B. Tsurutani, R. Lepping, and R. Schwenn ( 2002 ), Interplanetary phenomena associated with very intense geomagnetic storms, J. Atmos. Solar‐Terr. Phys., 64, 173 – 181, doi: 10.1016/S1364-6826(01)00082-7.
dc.identifier.citedreferenceAndersson, L., R. E. Ergun, and A. I. F. Stewart ( 2010 ), The combined atmospheric photochemistry and ion tracing code: Reproducing the Viking Lander results and initial outflow results, Icarus, 206, 120 – 129, doi: 10.1016/j.icarus.2009.07.009.
dc.identifier.citedreferenceAndersson, L., R. E. Ergun, G. T. Delory, A. Eriksson, J. Westfall, H. Reed, J. McCauly, D. Summers, and D. Meyers ( 2015 ), The Langmuir Probe and Waves (LPW) instrument for MAVEN, Space Sci. Rev., doi: 10.1007/s11214-015-0194-3.
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2001 ), A 50‐degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106, 23,197 – 23,208, doi: 10.1029/2000JE001365.
dc.identifier.citedreferenceCane, H., I. Richardson, and O. Cyr ( 2000 ), Coronal mass ejections, interplanetary ejecta, and geomagnetic storms, Geophys. Res. Lett., 27, 3591, doi: 10.1029/2000GL000111.
dc.identifier.citedreferenceConnerney, J. E. P., J. R. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, and D. Sheppard ( 2015 ), The MAVEN magnetic field investigation, Space Sci. Rev., 1 – 35, doi: 10.1007/s11214-015-0169-4.
dc.identifier.citedreferenceCrider, D. H., J. Espley, D. A. Brain, D. L. Mitchell, J. E. P. Connerney, and M. H. Acuña ( 2005 ), Mars Global Surveyor observations of the Halloween 2003 solar superstorm’s encounter with Mars, J. Geophys. Res., 110, A09S21, doi: 10.1029/2004JA010881.
dc.identifier.citedreferenceDong, C., S. W. Bougher, Y. Ma, G. Tóth, A. F. Nagy, and D. Najib ( 2014 ), Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708 – 2715, doi: 10.1002/2014GL059515.
dc.identifier.citedreferenceDong, C., et al. ( 2015 ), Multifluid MHD study of the solar wind interaction with Mars’ upper atmosphere during the 2015 March 8th ICME event, Geophys. Res. Lett., 42, doi: 10.1002/2015GL065944.
dc.identifier.citedreferenceEdberg, N. J. T., M. Lester, S. W. H. Cowley, and A. I. Eriksson ( 2008 ), Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields, J. Geophys. Res., 113, A08206, doi: 10.1029/2008JA013096.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.