Show simple item record

On the origin of lowâ energy electrons in the inner magnetosphere: Fluxes and pitchâ angle distributions

dc.contributor.authorDenton, M. H.
dc.contributor.authorReeves, G. D.
dc.contributor.authorLarsen, B. A.
dc.contributor.authorFriedel, R. F. W.
dc.contributor.authorThomsen, M. F.
dc.contributor.authorFernandes, P. A.
dc.contributor.authorSkoug, R. M.
dc.contributor.authorFunsten, H. O.
dc.contributor.authorSarno‐smith, L. K.
dc.date.accessioned2017-04-14T15:10:02Z
dc.date.available2018-04-02T18:03:24Zen
dc.date.issued2017-02
dc.identifier.citationDenton, M. H.; Reeves, G. D.; Larsen, B. A.; Friedel, R. F. W.; Thomsen, M. F.; Fernandes, P. A.; Skoug, R. M.; Funsten, H. O.; Sarno‐smith, L. K. (2017). "On the origin of lowâ energy electrons in the inner magnetosphere: Fluxes and pitchâ angle distributions." Journal of Geophysical Research: Space Physics 122(2): 1789-1802.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/136397
dc.description.abstractAccurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the lowâ energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of lowâ energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of lowâ energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from ~30â eV to 1â keV are quantified as a function of pitchâ angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for lowâ energy electrons in this energy range: the lowâ energy tail of the electron plasma sheet and the highâ energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitchâ angle distributions. Fieldâ aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron fieldâ aligned fluxes at ~30â eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.Key PointsLowâ energy electrons (tens to hundreds of eV) originate from two main sources: the ionosphere and the plasma sheetLowâ energy electrons pervade the inner magnetosphere where they can drive waveâ particle interactionsFluxes of electrons from ~30â eV to 1â keV are quantified by pitchâ angle, L value, and local time for both quiet and active periods
dc.publisherWiley Periodicals, Inc.
dc.publisherIAEA
dc.subject.otherinner magnetosphere
dc.titleOn the origin of lowâ energy electrons in the inner magnetosphere: Fluxes and pitchâ angle distributions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136397/1/jgra53305_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136397/2/jgra53305.pdf
dc.identifier.doi10.1002/2016JA023648
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceReeves, G. D., et al. ( 2016 ), Energyâ dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions, J. Geophys. Res. Space Physics, 121, 397 â 412, doi: 10.1002/2015JA021569.
dc.identifier.citedreferenceLi, W., R. M. Thorne, J. Bortnik, Y. Nishimura, V. Angelopoulus, L. Chen, J. P. McPhadden, and J. W. Bonnell ( 2010 ), Global distribution of suprathermal electrons observed on THEMIS and potential mechanism for access into the plasmasphere, J. Geophys. Res., 115, A00J10, doi: 10.1029/2010JA015687.
dc.identifier.citedreferenceMacDonald, E. A., M. H. Denton, M. F. Thomsen, and S. P. Gary ( 2008 ), Superposed epoch analysis of a whistler instability criterion at geosynchronous orbit during geomagnetic storms, J. Atmos. Sol. Terr. Phys., 70, 1789 â 1796, doi: 10.1016/j.jastp.2008.03.021.
dc.identifier.citedreferenceMacDonald, E. A., L. W. Blum, S. P. Gary, M. F. Thomsen, and M. H. Denton ( 2010 ), Highâ speed stream driven inferences of global wave distributions at geosynchronous orbit; relevance to radiation belt dynamics, Proc. Roy. Soc. A., 466, 3351 â 3362, doi: 10.1098/rspa.2010.0076.
dc.identifier.citedreferenceMauk, B. H., N. J. Fox, S. G. Kanekal, R. L. Kessel, D. G. Sibeck, and A. Ukhorskiy ( 2013 ), Science objectives and rationale for the Radiation Belt Storm Probes mission, Space Sci. Rev., 179, 3 â 27, doi: 10.1007/s11214-012-9908-y.
dc.identifier.citedreferenceOlsen, R. C. ( 1982 ), The hidden ion population of the magnetosphere, J. Geophys. Res., 87, 3481 â 3488, doi: 10.1029/JA087iA05p03481.
dc.identifier.citedreferenceOlsen, R. C., C. R. Chappell, D. L. Gallagher, J. L. Green, and D. A. Gurnett ( 1985 ), The hidden ion populationâ Revisited, J. Geophys. Res., 90, 12,121 â 12,132, doi: 10.1029/JA090iA12p12121.
dc.identifier.citedreferencePrölss, G. W. ( 1976 ), On explaining the negative phase of ionospheric storms, Planet. Space Sci., 24, 607 â 609, doi: 10.1016/0032-0633(76)90140-9.
dc.identifier.citedreferenceRishbeth, H. ( 1998 ), How the thermospheric circulation affects the ionospheric F2â layer, J. Atmos. Sol. Terr. Phys., 60, 1385 â 1402, doi: 10.1016/S1364-6826(98)00062-5.
dc.identifier.citedreferenceSarnoâ Smith, L. K., M. W. Liemohn, R. M. Katus, R. M. Skoug, B. A. Larsen, M. F. Thomsen, J. R. Wygant, and M. B. Moldwin ( 2015 ), Postmidnight depletion of the highâ energy tail of the quiet plasmasphere, J. Geophys. Res. Space Physics, 120, 1646 â 1660, doi: 10.1002/2014JA020682.
dc.identifier.citedreferenceSarnoâ Smith, L. K., B. A. Larsen, R. M. Skoug, M. W. Liemohn, A. Breneman, J. R. Wygant, and M. F. Thomsen ( 2016 ), Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes, Space Weather, 14, 151 â 164, doi: 10.1002/2015SW001345.
dc.identifier.citedreferenceSpence, H. E., et al. ( 2013 ), Science goals and overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Van Allen Probes mission, Space Sci. Rev., 179, 311 â 336, doi: 10.1007/s11214-013-0007-5.
dc.identifier.citedreferenceStorey, L. R. ( 1953 ), An investigation of whistling atmospherics, Phil. Trans. Roy Soc. (London), Ser. A, 246, 113 â 141, doi: 10.1098/rsta.1953.0011.
dc.identifier.citedreferenceTeste, A., D. Fontaine, J.â A. Savaud, R. Maggiolo, P. Canu, and A. Fazakerley ( 2007 ), CLUSTER observations of electron outflowing beams carrying downward currents above the polar cap by northward IMF, Ann. Geophys., 25, 953 â 969, doi: 10.5194/angeo-25-953-2007.
dc.identifier.citedreferenceThomsen, M. F., M. G. Henderson, and V. K. Jordanova ( 2013 ), Statistical properties of the surfaceâ charging environment at geosynchronous orbit, Space Weather, 11, 237 â 244, doi: 10.1002/swe.20049.
dc.identifier.citedreferenceThomsen, M. F. ( 2004 ), Why Kp is such a good measure of magnetospheric convection, Space Weather, 2, S11004, doi: 10.1029/2004SW000089.
dc.identifier.citedreferenceThomsen, M. F., M. H. Denton, B. Lavraud, and M. Bodeau ( 2007 ), Statistics of plasma fluxes at geosynchronous orbit over more than a full solar cycle, Space Weather, 5, S03004, doi: 10.1029/2006SW000257.
dc.identifier.citedreferenceThomsen, M. F., J. E. Borovsky, D. J. McComas, and M. R. Collier ( 1998a ), Variability of the ring current source population, Geophys. Res. Lett., 25, 3481 â 3484, doi: 10.1029/98GL02633.
dc.identifier.citedreferenceThomsen, M. F., D. J. McComas, J. E. Borovsky, and R. C. Elphic ( 1998b ), The magnetospheric trough, in Encounter Between Global Observations and Models in the ISTP Era, Geophys. Monogr. Ser., vol. 104, edited by J. L. Horwitz, D. L. Gallagher, and W. K. Peterson, pp. 355 â 369, AGU, Washington, D. C.
dc.identifier.citedreferenceThomsen, M. F., E. Noveroske, J. E. Borovsky, and D. J. McComas ( 1999 ), Calculation of moments from measurements by the Los Alamos Magnetospheric Plasma Analyzer, Los Alamos Natl. Lab. Rep., LAâ 13566â MS.
dc.identifier.citedreferenceThorne, R. M., and R. B. Horne ( 1994 ), Landau damping of magnetospherically reflected whistlers, J. Geophys. Res., 99, 17,249 â 17,258, doi: 10.1029/94JA01006.
dc.identifier.citedreferenceWhipple, E. C. ( 1978 ), (U, B, K) coordinates: A natural system for studying magnetospheric convection, J. Geophys. Res., 83, 4318 â 4326, doi: 10.1029/JA083iA09p04318.
dc.identifier.citedreferenceWygant, J., et al. ( 2013 ), The electric field and wave instruments on the Radiation Belt Storm Probes mission, Space Sci. Rev., 179, 183 â 220, doi: 10.1007/s11214-013-0013-7.
dc.identifier.citedreferenceZwolakowska, D., P. Koperski, and B. Popielawska ( 1992 ), Plasma populations in the tail during northward IMF, Proceedings of the 1st International Conference on Substorms, ESA SPâ 335, pp. 57â 62.
dc.identifier.citedreferenceBame, S. J., D. J. McComas, M. F. Thomsen, B. L. Barraclough, R. C. Elphic, J. P. Glore, J. C. Chavez, E. P. Evans, and F. J. Wymer ( 1993 ), Magnetospheric Plasma Analyzer for spacecraft with constrained resources, Rev. Sci. Instrum., 64, 1026 â 1033, doi: 10.1063/1.1144173.
dc.identifier.citedreferenceBell, T. F., U. S. Inan, J. Bortnik, and J. D. Scudder ( 2002 ), The Landau damping of magnetospherically reflected whistlers within the plasmasphere, Geophys. Res. Lett., 29 ( 15 ), 1733, doi: 10.1029/2002GL014752.
dc.identifier.citedreferenceBortnik, J., R. M. Thorne, and N. P. Meredith ( 2007 ), Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes, J. Geophys. Res., 112, A08204, doi: 10.1029/2006JA012237.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2008 ), A statistical look at plasmaspheric drainage plumes, J. Geophys. Res., 113, A09221, doi: 10.1029/2007JA012994.
dc.identifier.citedreferenceCarpenter, D. L. ( 1963 ), Whistler evidence of a â kneeâ in the magnetospheric ionisation density profile, J. Geophys. Res., 68, 1675 â 1682, doi: 10.1029/JZ068i006p01675.
dc.identifier.citedreferenceCarpenter, D. L., and C. G. Park ( 1973 ), On what ionospheric workers should know about the plasmapauseâ plasmasphere, Rev. Geophys., 11, 133 â 154, doi: 10.1029/RG011i001p00133.
dc.identifier.citedreferenceCattell, C., J. Dombeck, W. Yusof, C. Carlson, and J. McFadden ( 2004 ), FAST observations of the solar illumination dependence of upflowing electron beams in the auroral zone, J. Geophys. Res., 109, A02209, doi: 10.1029/2003JA010075.
dc.identifier.citedreferenceChappell, C. R., K. K. Harris, and G. W. Sharp ( 1971 ), OGO 5 measurements of the plasmasphere during observations of stable auroral arcs, J. Geophys. Res., 76, 2357 â 2365, doi: 10.1029/JA076i010p02357.
dc.identifier.citedreferenceChappell, C. R. ( 1972 ), Recent satellite measurements of the morphology and dynamics of the plasmasphere, Rev. Geophys., 10, 951 â 979, doi: 10.1029/RG010i004p00951.
dc.identifier.citedreferenceChappell, C. R., M. M. Huddleston, T. E. Moore, B. L. Giles, and D. C. Delcourt ( 2008 ), Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere, J. Geophys. Res., 113, A09206, doi: 10.1029/2007JA012945.
dc.identifier.citedreferenceChaston, C. C., W. J. Peria, C. W. Carlson, R. E. Ergun, and J. P. McPhadden ( 2001 ), FAST observations of inertial Alfvén waves and electron acceleration in the dayside aurora, Phys. Chem. Earth, 26 ( 1â 3 ), 201 â 205, doi: 10.1016/S1464-1917(00)00108-2.
dc.identifier.citedreferenceChriston, S. P., D. J. Williams, D. G. Mitchell, C. Y. Huang, and L. A. Frank ( 1991 ), Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions, J. Geophys. Res., 96, 1 â 22, doi: 10.1029/90JA01633.
dc.identifier.citedreferenceDeForest, S. E. ( 1972 ), Spacecraft charging at synchronous orbit, J. Geophys. Res., 77, 651 â 659, doi: 10.1029/JA077i004p00651.
dc.identifier.citedreferenceDenton, M. H., G. E. Reeves, M. F. Thomsen, M. G. Henderson, R. H. W. Friedel, B. Larsen, R. M. Skoug, H. O. Funsten, H. E. Spence, and C. A. Kletzing ( 2016b ), The complex nature of storm time ion dynamics: Transport and local acceleration, Geophys. Res. Lett., 43, 10,059 â 10,067, doi: 10.1002/2016GL070878.
dc.identifier.citedreferenceDenton, M. H., M. G. Henderson, V. K. Jordanova, M. F. Thomsen, J. E. Borovsky, J. Woodroffe, D. P. Hartley, and D. Pitchford ( 2016a ), An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions, Space Weather, 14, 511 â 523, doi: 10.1002/2016SW001409.
dc.identifier.citedreferenceDenton, M. H., M. F. Thomsen, V. K. Jordanova, M. G. Henderson, J. E. Borovsky, J. S. Denton, D. Pitchford, and D. P. Hartley ( 2015 ), An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit, Space Weather, 13, 233 â 249, doi: 10.1002/2015SW001168.
dc.identifier.citedreferenceDenton, M. H., and J. E. Borovsky ( 2014 ), Observations and modeling of magnetic flux tube refilling of the plasmasphere at geosynchronous orbit, J. Geophys. Res. Space Physics, 119, 9246 â 9255, doi: 10.1002/2014JA02049.
dc.identifier.citedreferenceDenton, M. H., and J. E. Borovsky ( 2008 ), Superposed epoch analysis of highâ speedâ stream effects at geosynchronous orbit: Hot plasma, cold plasma, and the solar wind, J. Geophys. Res., 113, A07216, doi: 10.1029/2007JA012998.
dc.identifier.citedreferenceDenton, M. H., and J. E. Borovsky ( 2012 ), Magnetosphere response to highâ speed solarâ wind streams: A comparison of weak and strong driving and the importance of extended periods of fast solar wind, J. Geophys. Res., 117, A00L05, doi: 10.1029/2011JA017124.
dc.identifier.citedreferenceDenton, M. H., M. F. Thomsen, H. Korth, S. Lynch, J. C. Zhang, and M. W. Liemohn ( 2005 ), Bulk plasma properties at geosynchronous orbit, J. Geophys. Res., 110, A07223, doi: 10.1029/2004JA010861.
dc.identifier.citedreferenceFarthing, W. H., J. P. Brown, and W. C. Bryant ( 1982 ), Differential spacecraft charging on the geostationary operational satellites, NASA Tech. Memo, NASA TMâ 83908.
dc.identifier.citedreferenceFok, M.â C., J. U. Kozyra, A. F. Nagy, and T. E. Cravens ( 1991 ), Lifetime of ring current particles due to Coulomb collisions in the plasmasphere, J. Geophys. Res., 96, 7861 â 7867, doi: 10.1029/90JA02620.
dc.identifier.citedreferenceFriedel, R. H. W., H. Korth, M. G. Henderson, M. F. Thomsen, and J. D. Scudder ( 2001 ), Plasma sheet access to the inner magnetosphere, J. Geophys. Res., 106, 5845 â 5858, doi: 10.1029/2000JA003011.
dc.identifier.citedreferenceFunsten, H. O., et al. ( 2013 ), Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the Radiation Belt Storm Probes mission, Space Sci. Rev., 179, 423 â 484, doi: 10.1007/s11214-013-9968-7.
dc.identifier.citedreferenceGarrett, H. B. ( 1981 ), The charging of spacecraft surfaces, Rev. Geophys., 19, 577 â 616, doi: 10.1029/RG019i004p00577.
dc.identifier.citedreferenceGringauz, K. I., V. V. Bezrukikh, V. D. Ozerov, and R. E. Rybchinskii ( 1960 ), Studying the interplanetary ionized gas, energetic electrons, and solar corpuscular radiation using threeâ electrode traps of charged particles on the second Soviet space rocket, Dokl. Akad. Nauk SSSR, 131, 1302 â 1304.
dc.identifier.citedreferenceHenderson, M. G., J. Woodroffe, V. Jordanova, and C. Harris ( 2015 ), Multiâ point observations and modeling of particle injections during substorms, Abstract SM13Dâ 2547, presented at 2015 Fall Meeting, AGU, San Francisco, Calif.
dc.identifier.citedreferenceJanev, R. K., and J. J. Smith ( 1993 ), Cross sections for collisional processes of hydrogen atoms with electrons, protons, and multiplyâ charged ions, in Atomic and Plasma Material Interaction Data for Fusion, vol. 4, pp. 78 â 79, IAEA, Vienna.
dc.identifier.citedreferenceJohnstone, A. D., and J. D. Winningham ( 1982 ), Satellite observations of suprathermal electron bursts, J. Geophys. Res., 87, 2321 â 2329, doi: 10.1029/JA087iA04p02321.
dc.identifier.citedreferenceKirby, K., et al. ( 2013 ), Radiation Belt Storm Probesâ Observatory and environments, Space Sci. Rev., 179, 59 â 125, doi: 10.1007/s11214-012-9949-2.
dc.identifier.citedreferenceKlumpar, D. M., and W. J. Heikkila ( 1982 ), Electrons in the ionospheric source cone: Evidence for runaway electrons as carriers of downward Birkeland currents, Geophys. Res. Lett., 9, 873 â 876, doi: 10.1029/GL009i008p00873.
dc.identifier.citedreferenceKorth, H., and M. F. Thomsen ( 2001 ), Plasma sheet access to geosynchronous orbit: Generalization to numerical field models, J. Geophys. Res., 106, 29,655 â 29,667, doi: 10.1029/2000JA000373.
dc.identifier.citedreferenceKorth, H., M. F. Thomsen, J. E. Borovsky, and D. J. McComas ( 1999 ), Plasma sheet access to geosynchronous orbit, J. Geophys. Res., 104, 25,047 â 25,061, doi: 10.1029/1999JA900292.
dc.identifier.citedreferenceLanzerotti, L. J., C. Breglia, D. W. Maurer, G. K. Johnson III, and C. G. MacLennan ( 1998 ), Studies of spacecraft charging on a geosynchronous telecommunications satellite, Adv. Space Res., 22, 79 â 82, doi: 10.1016/S0273-1177(97)01104-6.
dc.identifier.citedreferenceLavraud, B., M. H. Denton, M. F. Thomsen, J. E. Borovsky, and R. H. W. Friedel ( 2005 ), Superposed epoch analysis of dense plasma access to geosynchronous orbit, Ann. Geophys., 23, 2519 â 2529, doi: 10.5194/angeo-23-2519-2005.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.