Show simple item record

Spatial patterns and source attribution of urban methane in the Los Angeles Basin

dc.contributor.authorHopkins, Francesca M.
dc.contributor.authorKort, Eric A.
dc.contributor.authorBush, Susan E.
dc.contributor.authorEhleringer, James R.
dc.contributor.authorLai, Chun‐ta
dc.contributor.authorBlake, Donald R.
dc.contributor.authorRanderson, James T.
dc.date.accessioned2017-04-14T15:10:15Z
dc.date.available2017-04-14T15:10:15Z
dc.date.issued2016-03-16
dc.identifier.citationHopkins, Francesca M.; Kort, Eric A.; Bush, Susan E.; Ehleringer, James R.; Lai, Chun‐ta ; Blake, Donald R.; Randerson, James T. (2016). "Spatial patterns and source attribution of urban methane in the Los Angeles Basin." Journal of Geophysical Research: Atmospheres 121(5): 2490-2507.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/136408
dc.description.abstractUrban areas are increasingly recognized as a globally important source of methane to the atmosphere; however, the location of methane sources and relative contributions of source sectors are not well known. Recent atmospheric measurements in Los Angeles, California, USA, show that more than a third of the city’s methane emissions are unaccounted for in inventories and suggest that fugitive fossil emissions are the unknown source. We made onâ road measurements to quantify fineâ scale structure of methane and a suite of complementary trace gases across the Los Angeles Basin in June 2013. Enhanced methane levels were observed across the basin but were unevenly distributed in space. We identified 213 methane hot spots from unknown emission sources. We made direct measurements of ethane to methane (C2H6/CH4) ratios of known methane emission sources in the region, including cattle, geologic seeps, landfills, and compressed natural gas fueling stations, and used these ratios to determine the contribution of biogenic and fossil methane sources to unknown hot spots and to local urban background air. We found that 75% of hot spots were of fossil origin, 20% were biogenic, and 5% of indeterminate source. In regionally integrated air, we observed a wider range of C2H6/CH4 values than observed previously. Fossil fuel sources accounted for 58â 65% of methane emissions, with the range depending on the assumed C2H6/CH4 ratio of source endâ members and model structure. These surveys demonstrated the prevalence of fugitive methane emissions across the Los Angeles urban landscape and suggested that uninventoried methane sources were widely distributed and primarily of fossil origin.Key PointsAtmospheric methane levels are highly variable across Los AngelesThe majority of Los Angeles methane emissions are from fossil sourcesMobile laboratory approach can identify and apportion methane emissions regionally
dc.publisherLibreria Eredi Virgilio Veschi
dc.publisherWiley Periodicals, Inc.
dc.subject.otherethane
dc.subject.otherfugitive
dc.subject.othermethane
dc.subject.otheremissions
dc.subject.otherapportionment
dc.titleSpatial patterns and source attribution of urban methane in the Los Angeles Basin
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136408/1/jgrd52791.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136408/2/jgrd52791_am.pdf
dc.identifier.doi10.1002/2015JD024429
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferencePetron, G., et al. ( 2012 ), Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study, J. Geophys. Res., 117, D04304, doi: 10.1029/2011JD016360.
dc.identifier.citedreferenceKirchstetter, T. W., B. C. Singer, R. A. Harley, G. R. Kendall, and W. Chan ( 1996 ), Impact of oxygenated gasoline use on California lightâ duty vehicle emissions, Environ. Sci. Technol., 30, 661 â 670.
dc.identifier.citedreferenceKirschke, S., et al. ( 2013 ), Three decades of global methane sources and sinks, Nat. Geosci., 6, 813 â 823.
dc.identifier.citedreferenceKort, E. A., J. Eluszkiewicz, B. B. Stephens, J. B. Miller, C. Gerbig, T. Nehrkorn, B. C. Daube, J. O. Kaplan, S. Houweling, and S. C. Wofsy ( 2008 ), Emissions of CH 4 and N 2 O over the United States and Canada based on a receptorâ oriented modeling framework and COBRAâ NA atmospheric observations, Geophys. Res. Lett., 35, L18808, doi: 10.1029/2008GL034031.
dc.identifier.citedreferenceLamb, B. K., S. L. Edburg, T. W. Ferrara, T. Howard, M. R. Harrison, C. E. Kolb, A. Townsendâ Small, W. Dyck, A. Possolo, and J. R. Whetstone ( 2015 ), Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States, Environ. Sci. Technol., 49, 5161 â 5169.
dc.identifier.citedreferenceLeifer, I., D. Culling, O. Schneising, P. Farrell, M. Buchwitz, and J. P. Burrows ( 2013 ), Transcontinental methane measurements: Part 2. Mobile surface investigation of fossil fuel industrial fugitive emissions, Atmos. Environ., 74, 432 â 441.
dc.identifier.citedreferenceMarcotullio, P. J., A. Sarzynski, J. Albrecht, N. Schulz, and J. Garcia ( 2013 ), The geography of global urban greenhouse gas emissions: An exploratory analysis, Clim. Change, 121, 621 â 634.
dc.identifier.citedreferenceMiller, S. M., et al. ( 2013 ), Anthropogenic emissions of methane in the United States, Proc. Natl. Acad. Sci. U.S.A. [Available at www.pnas.org/cgi/doi/10.1073/pnas.1314392110.]
dc.identifier.citedreferenceMyhre, G., et al. ( 2013 ), Anthropogenic and natural radiative forcing, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 710 â 716, Cambridge Univ. Press, Cambridge, U. K., and New York.
dc.identifier.citedreferenceNewman, S., et al. ( 2013 ), Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles Basin megacity during spring 2010, Atmos. Chem. Phys., 13, 4359 â 4372.
dc.identifier.citedreferenceNovelli, P. C., and K. A. Masarie ( 2013 ), Atmospheric carbon monoxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network, 1988â 2012, Version: 2013â 06â 18. [Available at ftp://aftp.cmdl.noaa.gov/data/trace_gases/co/flask/surface/co_kum_surfaceâ flask_1_ccgg_event.txt.]
dc.identifier.citedreferencePeischl, J., et al. ( 2013 ), Quantifying sources of methane using light alkanes in the Los Angeles Basin, California, J. Geophys. Res. Atmos., 118, 4974 â 4990, doi: 10.1002/jgrd.50413.
dc.identifier.citedreferencePhillips, N. G., R. Ackley, E. R. Crosson, A. Down, L. R. Hutyra, M. Brondfield, J. D. Karr, K. Zhao, and R. B. Jackson ( 2013 ), Mapping urban pipeline leaks: Methane leaks across Boston, Environ. Pollut., 173, 1 â 4.
dc.identifier.citedreferenceRudolph, J. ( 1995 ), The tropospheric distribution and budget of ethane, J. Geophys. Res., 100, 11,369 â 11,381, doi: 10.1029/95JD00693.
dc.identifier.citedreferenceShindell, D., et al. ( 2012 ), Simultaneously mitigating nearâ term climate change and improving human health and food security, Science, 335, 183 â 189.
dc.identifier.citedreferenceSouthern California Gas Company ( 2011 ), Pipeline safety activities performed by Southern California gas company within the County of Los Angeles report, County of Los Angeles Department of Public Works, Los Angeles, Calif.
dc.identifier.citedreferenceTennyson, M. ( 2005 ), Growth history of oil reserves in major California oil fields during the twentieth century U.S. Geol. Surv. Bull. 2172â H., Reston, Va.
dc.identifier.citedreferenceTownsendâ Small, A., S. C. Tyler, D. E. Pataki, X. Xu, and L. E. Christensen ( 2012 ), Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of â fugitiveâ fossil fuel emissions, J. Geophys. Res., 117, D07308, doi: 10.1029/2011JD016826.
dc.identifier.citedreferenceU.S. Environmental Protection Agency (US EPA) ( 2014 ), Inventory of U.S. greenhouse gas emissions and sinks: 1990â 2012 Publ. EPA 430â Râ 14â 003, Washington, D. C.
dc.identifier.citedreferenceVutukuru, S., R. J. Griffin, and D. Dabdub ( 2006 ), Simulation and analysis of secondary organic aerosol dynamics in the South Coast Air Basin of California, J. Geophys. Res., 111, D10S12, doi: 10.1029/2005JD006139.
dc.identifier.citedreferenceWennberg, P. O., et al. ( 2012 ), On the sources of methane in the Los Angeles atmosphere, Environ. Sci. Technol., 46, 9282 â 9289.
dc.identifier.citedreferenceWong, K. W., D. Fu, T. J. Pongetti, S. Newman, E. A. Kort, R. Duren, Y.â K. Hsu, C. E. Miller, Y. L. Yung, and S. P. Sander ( 2015 ), Mapping CH 4: CO 2 ratios in Los Angeles with CLARSâ FTS from Mount Wilson, California, Atmos. Chem. Phys., 15, 241 â 252.
dc.identifier.citedreferenceWunch, D., P. O. Wennberg, G. C. Toon, G. Keppelâ Aleks, and Y. G. Yavin ( 2009 ), Emissions of greenhouse gases from a North American megacity, Geophys. Res. Lett., 36, L15810, doi: 10.1029/2009GL039825.
dc.identifier.citedreferenceXiao, Y., J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake ( 2008 ), Global budget of ethane and regional constraints on U.S. sources, J. Geophys. Res., 113, D21306, doi: 10.1029/2007JD009415.
dc.identifier.citedreferenceYacovitch, T. I., et al. ( 2014 ), Demonstration of an ethane spectrometer for methane source identification, Environ. Sci. Technol., doi: 10.1021/es501475q.
dc.identifier.citedreferenceYork, D., N. Evensen, M. Martínez, and J. Delgado ( 2004 ), Unified equations for the slope, intercept, and standard errors of the best straight line, Am. J. Phys., 72 ( 3 ), 367 â 375.
dc.identifier.citedreferenceAydin, M., K. R. Verhulst, E. S. Saltzman, M. O. Battle, S. A. Montzka, D. R. Blake, Q. Tang, and M. J. Prather ( 2011 ), Recent decreases in fossilâ fuel emissions of ethane and methane derived from firn air, Nature, 476, 198 â 201.
dc.identifier.citedreferenceBilodeau, W. L., S. W. Bilodeau, E. M. Gath, M. Oborne, and R. J. Proctor ( 2007 ), Geology of Los Angeles, California, United States of America, Environ. Eng. Geosci., 13 ( 2 ), 99 â 160.
dc.identifier.citedreferenceBlake, D. R., V. H. Woo, S. C. Tyler, and F. S. Rowland ( 1984 ), Methane mole fractions and source strengths in urban locations, Geophys. Res. Lett., 11, 1211 â 1214.
dc.identifier.citedreferenceBrandt, A. R., et al. ( 2014 ), Methane leaks from North American natural gas systems, Science, 343, 733 â 735.
dc.identifier.citedreferenceBush, S. E., F. M. Hopkins, J. T. Randerson, C. T. Lai, and J. R. Ehleringer ( 2015 ), Design and application or a mobile groundâ based observatory for continuous measurements of atmospheric traceâ gas and criteria pollutant species, Atmos. Meas. Tech., 8, 3481 â 3492.
dc.identifier.citedreferenceCalifornia Air Resources Board ( 2011 ), California greenhouse gas emissions inventory, California Air Resources Board Staff Rep. [Available at http://www.arb.ca.gov/cc/inventory/inventory.htm,document: ghg_inventory_by_ipcc_00â 09_2011â 10â 26.xls.]
dc.identifier.citedreferenceCardno ENTRIX ( 2012 ), Hydraulic fracturing study, PXP Inglewood oil field report, 206â pp., Plains Exploration & Production Company and Los Angles County, Department of Regional Planning, Los Angeles, Calif.
dc.identifier.citedreferenceCicerone, R. J., and R. S. Oremland ( 1988 ), Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles, 2, 299 â 327.
dc.identifier.citedreferenceColman, J. J., A. L. Swanson, S. Meinardi, B. C. Sive, D. R. Blake, and F. S. Rowland ( 2001 ), Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEMâ Tropics A and B, Anal. Chem., 73, 3723 â 31.
dc.identifier.citedreferenceDjuricin, S., D. E. Pataki, and X. Xu ( 2010 ), A comparison of tracer methods for quantifying CO2 sources in an urban region, J. Geophys. Res., 115, D11303, doi: 10.1029/2009JD012236.
dc.identifier.citedreferenceDlugokencky, E. J., P. M. Lang, K. A. Masarie, A. M. Crotwell, and M. J. Crotwell ( 2013a ), Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network, 1968â 2012, Version: 2013â 08â 2. [Available at ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/co2_kum_surfaceâ flask_1_ccgg_event.txt.]
dc.identifier.citedreferenceDlugokencky, E. J., P. M. Lang, A. M. Crotwell, K. A. Masarie, and M. J. Crotwell ( 2013b ), Atmospheric methane dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network, 1983â 2012, Version: 2013â 08â 28. [Available at ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/ch4_kum_surfaceâ flask_1_ccgg_event.txt.]
dc.identifier.citedreferenceEtiope, G., and P. Ciccioli ( 2009 ), Earth’s degassing: A missing ethane and propane source, Science, 323, 478.
dc.identifier.citedreferenceGautier, D. L., M. E. Tennyson, R. R. Charpentier, T. A. Cook, and T. R. Klett ( 2012 ), Foregone oil in the Los Angles Basin: Assessment of remaining petroleum in giant fields of Southern California Search and Discovery, Article #20164.
dc.identifier.citedreferenceGini, C. ( 1912 ), Variabilitá e mutabilitá, in Memorie di Motodologica Statistica, edited by E. Pizetti and T. Salvemini, 156 pp., Libreria Eredi Virgilio Veschi, Rome.
dc.identifier.citedreferenceHelmig, D., Hueber J., and Tans P. ( 2011 ), Nonâ methane hydrocarbons from the NOAA ESRL surface network, 2004â 2011. [Available at ftp://aftp.cmdl.noaa.gov/data/trace_gases/voc/c2h6/flask/event/kum_01D0_event.c2h6.]
dc.identifier.citedreferenceHsu, Y.â K., T. VanCuren, S. Park, C. Jakober, J. Herner, M. FitzGibbon, D. R. Blake, and D. D. Parrish ( 2010 ), Methane emissions inventory verification in Southern California, Atmos. Environ., 44, 1 â 7.
dc.identifier.citedreferenceJackson, R. B., A. Down, N. G. Phillips, R. C. Ackley, C. W. Cook, D. L. Plata, and K. Zhao ( 2014 ), Natural gas pipeline leaks across Washington, D. C, Environ. Sci. Technol., 48, 2051 â 2058.
dc.identifier.citedreferenceJeffrey, A. W. A., et al. ( 1991 ), Geochemistry of Los Angeles Basin oil and gas systems, in Active Margin Basins, Mem., vol. 52, edited by K. T. Biddle, pp. 197 â 219, Am. Assoc. Petrol. Geol., Tulsa, Okla.
dc.identifier.citedreferenceJeong, S., Y.â K. Hsu, A. E. Andrews, L. Bianco, P. Vaca, J. M. Wilczak, and M. L. Fischer ( 2013 ), A multitower measurement network estimate of California’s methane emissions, J. Geophys. Res. Atmos., 118, 11,339 â 11,351, doi: 10.1002/jgrd.50854.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.