Show simple item record

Electric Mars: A large transâ terminator electric potential drop on closed magnetic field lines above Utopia Planitia

dc.contributor.authorCollinson, Glyn
dc.contributor.authorMitchell, David
dc.contributor.authorXu, Shaosui
dc.contributor.authorGlocer, Alex
dc.contributor.authorGrebowsky, Joseph
dc.contributor.authorHara, Takuya
dc.contributor.authorLillis, Robert
dc.contributor.authorEspley, Jared
dc.contributor.authorMazelle, Christian
dc.contributor.authorSauvaud, Jean‐andré
dc.contributor.authorFedorov, Andrey
dc.contributor.authorLiemohn, Mike
dc.contributor.authorAndersson, Laila
dc.contributor.authorJakosky, Bruce
dc.date.accessioned2017-04-14T15:10:48Z
dc.date.available2018-04-02T18:03:24Zen
dc.date.issued2017-02
dc.identifier.citationCollinson, Glyn; Mitchell, David; Xu, Shaosui; Glocer, Alex; Grebowsky, Joseph; Hara, Takuya; Lillis, Robert; Espley, Jared; Mazelle, Christian; Sauvaud, Jean‐andré ; Fedorov, Andrey; Liemohn, Mike; Andersson, Laila; Jakosky, Bruce (2017). "Electric Mars: A large transâ terminator electric potential drop on closed magnetic field lines above Utopia Planitia." Journal of Geophysical Research: Space Physics 122(2): 2260-2271.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/136441
dc.description.abstractParallel electric fields and their associated electric potential structures play a crucial role in ionosphericâ magnetospheric interactions at any planet. Although there is abundant evidence that parallel electric fields play key roles in Martian ionospheric outflow and auroral electron acceleration, the fields themselves are challenging to directly measure due to their relatively weak nature. Using measurements by the Solar Wind Electron Analyzer instrument aboard the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars Scout, we present the discovery and measurement of a substantial (ΦMars=7.7 ± 0.6 V) parallel electric potential drop on closed magnetic field lines spanning the terminator from day to night above the great impact basin of Utopia Planitia, a region largely free of crustal magnetic fields. A survey of the previous 26 orbits passing over a range of longitudes revealed similar signatures on seven orbits, with a mean potential drop (ΦMars) of 10.9 ± 0.8 V, suggestive that although transâ terminator electric fields of comparable strength are not ubiquitous, they may be common, at least at these northerly latitudes.Key PointsWe report the discovery of a substantial parallel electric potential drop on closed dayâ toâ night magnetic field lines at MarsAlthough transâ terminator electric fields are not ubiquitous, they may be common in the northern Martian hemisphereObservations are consistent with a transient or localized phenomenon and may be associated with magnetic crustal field remanents
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.otherelectric fields
dc.subject.otherMars
dc.subject.otherMAVEN
dc.subject.otherpolarization electric field
dc.titleElectric Mars: A large transâ terminator electric potential drop on closed magnetic field lines above Utopia Planitia
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136441/1/jgra53178_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136441/2/jgra53178.pdf
dc.identifier.doi10.1002/2016JA023589
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceLiemohn, M. W., et al. ( 2007 ), Mars global MHD predictions of magnetic connectivity between the dayside ionosphere and the magnetospheric flanks, 126, 63, doi: 10.1007/978â 0â 387â 70943â 7â 4.
dc.identifier.citedreferenceCoates, A. J., A. D. Johnstone, J. J. Sojka, and G. L. Wrenn ( 1985 ), Ionospheric photoelectrons observed in the magnetosphere at distances up to 7 Earth radii, Planet. Space. Sci., 33, 1267 â 1275, doi: 10.1016/0032â 0633(85)90005â 4.
dc.identifier.citedreferenceCollinson, G., et al. ( 2015 ), Electric Mars: The first direct measurement of an upper limit for the Martian â polar windâ electric potential, Geophys. Res. Lett., 42, 9128 â 9134, doi: 10.1002/2015GL065084.
dc.identifier.citedreferenceCollinson, G. A., et al. ( 2016 ), The electric wind of Venus: A global and persistent â polar windâ â like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions, Geophys. Res. Lett., 43, 5926 â 5934, doi: 10.1002/2016GL068327.
dc.identifier.citedreferenceConnerney, J. E. P., et al. ( 1999 ), Magnetic lineations in the ancient crust of Mars, Science, 284, 794 â 798, doi: 10.1126/science.284.5415.794.
dc.identifier.citedreferenceCurry, S. M., J. Luhmann, Y. Ma, M. Liemohn, C. Dong, and T. Hara ( 2015 ), Comparative pickâ up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape, Planet. Space. Sci., 115, 35 â 47, doi: 10.1016/j.pss.2015.03.026.
dc.identifier.citedreferenceDubinin, E., G. Chanteur, M. Fraenz, and J. Woch ( 2008 ), Fieldâ aligned currents and parallel electric field potential drops at Mars. Scaling from the Earth’s aurora, Planet. Space. Sci., 56, 868 â 872, doi: 10.1016/j.pss.2007.01.019.
dc.identifier.citedreferenceDubinin, E., M. Fraenz, J. Woch, F. Duru, D. Gurnett, R. Modolo, S. Barabash, and R. Lundin ( 2009 ), Ionospheric storms on Mars: Impact of the corotating interaction region, Geophys. Res. Lett., 36, L01105, doi: 10.1029/2008GL036559.
dc.identifier.citedreferenceDubinin, E., M. Fraenz, A. Fedorov, R. Lundin, N. Edberg, F. Duru, and O. Vaisberg ( 2011 ), Ion energization and escape on Mars and Venus, Space Sci. Rev., 162, 173 â 211, doi: 10.1007/s11214â 011â 9831â 7.
dc.identifier.citedreferenceFowler, C. M., et al. ( 2015 ), The first in situ electron temperature and density measurements of the Martian nightside ionosphere, Geophys. Res. Lett., 42, 8854 â 8861, doi: 10.1002/2015GL065267.
dc.identifier.citedreferenceFrahm, R. A., et al. ( 2006 ), Carbon dioxide photoelectron energy peaks at Mars, Icarus, 182, 371 â 382, doi: 10.1016/j.icarus.2006.01.014.
dc.identifier.citedreferenceFrahm, R. A., et al. ( 2010 ), Estimation of the escape of photoelectrons from Mars in 2004 liberated by the ionization of carbon dioxide and atomic oxygen, Icarus, 206, 50 â 63, doi: 10.1016/j.icarus.2009.03.024.
dc.identifier.citedreferenceGan, L., T. E. Cravens, and M. Horanyi ( 1990 ), Electrons in the ionopause boundary layer of Venus, J. Geophys. Res., 95, 19,023 â 19,035, doi: 10.1029/JA095iA11p19023.
dc.identifier.citedreferenceHalekas, J. S., D. A. Brain, R. P. Lin, J. G. Luhmann, and D. L. Mitchell ( 2008 ), Distribution and variability of accelerated electrons at Mars, Adv. Space Res., 41, 1347 â 1352, doi: 10.1016/j.asr.2007.01.034.
dc.identifier.citedreferenceHinteregger, H. E., K. Fukui, and B. R. Gilson ( 1981 ), Observational, reference and model data on solar EUV, from measurements on AEâ E, Geophys. Res. Lett., 8, 1147 â 1150, doi: 10.1029/GL008i011p01147.
dc.identifier.citedreferenceJakosky, B., et al. ( 2015 ), The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, Space Sci. Rev., 195, 1 â 46, doi: 10.1007/s11214â 015â 0139â x.
dc.identifier.citedreferenceKhazanov, G. V., and M. W. Liemohn ( 1995 ), Nonsteady state ionosphereâ plasmasphere coupling of superthermal electrons, J. Geophys. Res., 100, 9669 â 9682, doi: 10.1029/95JA00526.
dc.identifier.citedreferenceKitamura, N., K. Seki, Y. Nishimura, N. Terada, T. Ono, T. Hori, and R. J. Strangeway ( 2012 ), Photoelectron flows in the polar wind during geomagnetically quiet periods, J. Geophys. Res., 117, A07214, doi: 10.1029/2011JA017459.
dc.identifier.citedreferenceLiemohn, M. W., D. L. Mitchell, A. F. Nagy, J. L. Fox, T. W. Reimer, and Y. Ma ( 2003 ), Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with a B fieldâ dependent transport code, J. Geophys. Res., 108, 5134, doi: 10.1029/2003JE002158.
dc.identifier.citedreferenceLiemohn, M. W., et al. ( 2006 ), Mars global MHD predictions of magnetic connectivity between the dayside ionosphere and the magnetospheric flanks, Space Sci. Rev., 126, 63 â 76, doi: 10.1007/s11214â 006â 9116â 8.
dc.identifier.citedreferenceLundin, R., et al. ( 2006a ), Ionospheric plasma acceleration at Mars: ASPERAâ 3 results, Icarus, 182, 308 â 319, doi: 10.1016/j.icarus.2005.10.035.
dc.identifier.citedreferenceLundin, R., et al. ( 2006b ), Plasma acceleration above Martian magnetic anomalies, Science, 311, 980 â 983, doi: 10.1126/science.1122071.
dc.identifier.citedreferenceLundin, R., et al. ( 2006c ), Auroral plasma acceleration above Martian magnetic anomalies, Space Sci. Rev., 126, 333 â 354, doi: 10.1007/s11214â 006â 9086â x.
dc.identifier.citedreferenceMitchell, D. L., et al. ( 2016 ), The MAVEN solar wind electron analyzer, Space Sci. Rev., 200, 495 â 528, doi: 10.1007/s11214â 015â 0232â 1.
dc.identifier.citedreferenceRichards, P. G., and W. K. Peterson ( 2008 ), Measured and modeled backscatter of ionospheric photoelectron fluxes, J. Geophys. Res., 113, A08321, doi: 10.1029/2008JA013092.
dc.identifier.citedreferenceVignes, D., et al. ( 2000 ), The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pileâ up boundary from the observations of the MAG/ER experiment onboard Mars Global Surveyor, Geophys. Res. Lett., 27, 49 â 52, doi: 10.1029/1999GL010703.
dc.identifier.citedreferenceWilson, G. R., G. Khazanov, and J. L. Horwitz ( 1997 ), Achieving zero current for polar wind outflow on open flux tubes subjected to large photoelectron fluxes, Geophys. Res. Lett., 24, 1183 â 1186, doi: 10.1029/97GL00923.
dc.identifier.citedreferenceWinningham, J. D., and C. Gurgiolo ( 1982 ), DEâ 2 photoelectron measurements consistent with a large scale parallel electric field over the polar cap, Geophys. Res. Lett., 9, 977 â 979, doi: 10.1029/GL009i009p00977.
dc.identifier.citedreferenceXu, S. ( 2015 ), Superthermal electrons at Mars: Photoelectrons, solar wind electrons and dust storm influences, PhD thesis, Univ. of Michigan, Ann Arbor, Mich.
dc.identifier.citedreferenceXu, S., and M. W. Liemohn ( 2015 ), Superthermal electron transport model for Mars, Earth Space Sci., 2, 47 â 64, doi: 10.1002/2014EA000043.
dc.identifier.citedreferenceXu, S., M. W. Liemohn, W. K. Peterson, J. Fontenla, and P. Chamberlin ( 2015 ), Comparison of different solar irradiance models for the superthermal electron transport model for Mars, Planet. Space. Sci., 119, 62 â 68, doi: 10.1016/j.pss.2015.09.008.
dc.identifier.citedreferenceXu, S., M. Liemohn, S. Bougher, and D. Mitchell ( 2016 ), Martian highâ altitude photoelectrons independent of solar zenith angle, J. Geophys. Res. Space Physics, 121, 3767 â 3780, doi: 10.1002/2015JA022149.
dc.identifier.citedreferenceAcuña, M. H., et al. ( 1998 ), Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission, Science, 279, 1676 â 1680, doi: 10.1126/science.279.5357.1676.
dc.identifier.citedreferenceBanks, P. M., and T. E. Holzer ( 1968 ), The polar wind, J. Geophys. Res., 73, 6846 â 6854, doi: 10.1029/JA073i021p06846.
dc.identifier.citedreferenceBarabash, S., et al. ( 2007 ), The loss of ions from Venus through the plasma wake, Nature, 450, 650 â 653.
dc.identifier.citedreferenceBougher, S., A. Brecht, R. Schulte, J. Fischer, C. Parkinson, A. Mahieux, V. Wilquet, and A. Vandaele ( 2015 ), Upper atmosphere temperature structure at the Venusian terminators: A comparison of SOIR and VTGCM results, Planet. Space. Sci., 113, 336 â 346, doi: 10.1016/j.pss.2015.01.012.
dc.identifier.citedreferenceBrain, D. A., et al. ( 2006 ), On the origin of aurorae on Mars, Geophys. Res. Lett., 33, L01201, doi: 10.1029/2005GL024782.
dc.identifier.citedreferenceBrain, D. A., R. J. Lillis, D. L. Mitchell, J. S. Halekas, and R. P. Lin ( 2007 ), Electron pitch angle distributions as indicators of magnetic field topology near Mars, J. Geophys. Res., 112, A09201, doi: 10.1029/2007JA012435.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.