Show simple item record

A bio‐artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock

dc.contributor.authorWestover, Angela J.
dc.contributor.authorBuffington, Deborah A.
dc.contributor.authorJohnston, Kimberly A.
dc.contributor.authorSmith, Peter L.
dc.contributor.authorPino, Christopher J.
dc.contributor.authorHumes, H. David
dc.date.accessioned2017-04-14T15:10:51Z
dc.date.available2018-05-04T20:56:58Zen
dc.date.issued2017-03
dc.identifier.citationWestover, Angela J.; Buffington, Deborah A.; Johnston, Kimberly A.; Smith, Peter L.; Pino, Christopher J.; Humes, H. David (2017). "A bio‐artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock." Journal of Tissue Engineering and Regenerative Medicine 11(3): 649-657.
dc.identifier.issn1932-6254
dc.identifier.issn1932-7005
dc.identifier.urihttps://hdl.handle.net/2027.42/136443
dc.description.abstractRenal cell therapy using the hollow fiber based renal assist device (RAD) improved survival time in an animal model of septic shock (SS) through the amelioration of cardiac and vascular dysfunction. Safety and ability of the RAD to improve clinical outcomes was demonstrated in a Phase II clinical trial, in which patients had high prevalence of sepsis. Even with these promising results, clinical delivery of cell therapy is hampered by manufacturing hurdles, including cell sourcing, large‐scale device manufacture, storage and delivery. To address these limitations, the bioartificial renal epithelial cell system (BRECS) was developed. The BRECS contains human renal tubule epithelial cells derived from adult progenitor cells using enhanced propagation techniques. Cells were seeded onto trabeculated disks of niobium‐coated carbon, held within cryopreservable, perfusable, injection‐moulded polycarbonate housing. The study objective was to evaluate the BRECS in a porcine model of SS to establish conservation of efficacy after necessary cell sourcing and design modifications; a pre‐clinical requirement to move back into clinical trials. SS was incited by peritoneal injection of E. coli simultaneous to insertion of BRECS (n=10) or control (n=15), into the ultrafiltrate biofeedback component of an extracorporeal circuit. Comparable to RAD, prolonged survival of the BRECS cohort was conveyed through stabilization of cardiac output and vascular leak. In conclusion, the demonstration of conserved efficacy with BRECS therapy in a porcine SS model represents a crucial step toward returning renal cell therapy to the clinical setting, initially targeting ICU patients with acute kidney injury requiring continuous renal replacement therapy. Copyright © 2014 John Wiley & Sons, Ltd.
dc.publisherWiley Periodicals, Inc.
dc.subject.othertissue therapy
dc.subject.othersystemic inflammatory response syndrome
dc.subject.othercapillary leak syndrome
dc.subject.otherimmunotherapy
dc.subject.otheracute kidney injury
dc.subject.otherartificial kidney
dc.subject.otherseptic shock
dc.titleA bio‐artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136443/1/term1961.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136443/2/term1961_am.pdf
dc.identifier.doi10.1002/term.1961
dc.identifier.sourceJournal of Tissue Engineering and Regenerative Medicine
dc.identifier.citedreferenceMao H, Katz N, Ariyanon W et al. 2013; Cardiac surgery‐associated acute kidney injury. Cardiorenal Med 3 ( 3 ): 178 – 199.
dc.identifier.citedreferenceDing F, Song JH, Jung JY et al. 2011; A biomimetic membrane device that modulates the excessive inflammatory response to sepsis. PLoS One 6 ( 4 ): e18584.
dc.identifier.citedreferenceFahy GM, Wowk B, Wu J. 2006; Cryopreservation of complex systems: the missing link in the regenerative medicine supply chain. Rejuvenat Res 9 ( 2 ): 279 – 291.
dc.identifier.citedreferenceFissell WH, Dyke DB, Weitzel WF et al. 2002; Bioartificial kidney alters cytokine response and hemodynamics in endotoxin‐challenged uremic animals. Blood Purif 20 ( 1 ): 55 – 60.
dc.identifier.citedreferenceFissell WH, Lou L, Abrishami S et al. 2003; Bioartificial kidney ameliorates Gram‐negative bacteria‐induced septic shock in uremic animals. J Am Soc Nephrol 14 ( 2 ): 454 – 461.
dc.identifier.citedreferenceGiamarellos‐Bourboulis EJ, Raftogiannis M. 2012; The immune response to severe bacterial infections: consequences for therapy. Expert Rev Anti Infect Ther 10 ( 3 ): 369 – 380.
dc.identifier.citedreferenceHumes HD. 1995; Acute renal failure: prevailing challenges and prospects for the future. Kidney Int Suppl 50: S26 – S32.
dc.identifier.citedreferenceHumes HD. 2000; Bioartificial kidney for full renal replacement therapy. Semin Nephrol 20 ( 1 ): 71 – 82.
dc.identifier.citedreferenceHumes HD, Buffington DA, MacKay SM et al. 1999a; Replacement of renal function in uremic animals with a tissue‐engineered kidney. Nat Biotechnol 17 ( 5 ): 451 – 455.
dc.identifier.citedreferenceHumes HD, MacKay SM, Funke AJ et al. 1999b; Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int 55 ( 6 ): 2502 – 2514.
dc.identifier.citedreferenceHumes HD, Fissell WH, Weitzel WF. 2002a; The bioartificial kidney in the treatment of acute renal failure. Kidney Int Suppl 80: 121 – 125.
dc.identifier.citedreferenceHumes HD, Fissell WH, Weitzel WF et al. 2002b; Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. Am J Kidney Dis 39 ( 5 ): 1078 – 1087.
dc.identifier.citedreferenceHumes HD, Weitzel WF, Bartlett RH et al. 2003a; Renal cell therapy is associated with dynamic and individualized responses in patients with acute renal failure. Blood Purif 21 ( 1 ): 64 – 71.
dc.identifier.citedreferenceHumes HD, Buffington DA, Lou L et al. 2003b; Cell therapy with a tissue‐engineered kidney reduces the multiple‐organ consequences of septic shock. Crit Care Med 31 ( 10 ): 2421 – 2428.
dc.identifier.citedreferenceLandray MJ, Wheeler DC, Lip GY et al. 2004; Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) study. Am J Kidney Dis 43 ( 2 ): 244 – 253.
dc.identifier.citedreferenceLevy MM, Fink MP, Marshall JC et al. 2003; 2001 SCCM/ESICM/ACCP/ATS/SIS: international sepsis definitions conference. Crit Care Med 31 ( 4 ): 1250 – 1256.
dc.identifier.citedreferenceMartin GS, Mannino DM, Eaton S et al. 2003; The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348 ( 16 ): 1546 – 1554.
dc.identifier.citedreferenceOsuchowski MF, Welch K, Siddiqui J et al. 2006; Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol 177 ( 3 ): 1967 – 1974.
dc.identifier.citedreferencePeng ZY, Wang HZ, Carter MJ et al. 2012; Acute removal of common sepsis mediators does not explain the effects of extracorporeal blood purification in experimental sepsis. Kidney Int 81 ( 4 ): 363 – 369.
dc.identifier.citedreferencePierrakos C, Vincent JL. 2010; Sepsis biomarkers: a review. Crit Care 14 ( 1 ): R15.
dc.identifier.citedreferenceRoberts RL, Hatori N, Drury JK et al. 1987; Purification and properties of porcine polymorphonuclear cells. J Immunol Methods 103 ( 1 ): 27 – 32.
dc.identifier.citedreferenceTariq A, Izhar K, Simpson W et al. 2007; Incidence and outcomes in acute kidney injury: a comprehensive population‐based study. J Am Soc Nephrol 18: 1021 – 1022.
dc.identifier.citedreferenceTumlin J, Wali R, Williams W et al. 2008; Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol 19 ( 5 ): 1034 – 1040.
dc.identifier.citedreferenceVincent JL, Rello J, Marshall J et al. 2009; International study of the prevalence and outcomes of infection in intensive care units. J Am Med Assoc 302 ( 21 ): 2323 –t1 2329.
dc.identifier.citedreferenceWaikar SS, Curhan GC, Wald R et al. 2006; Declining mortality in patients with acute renal failure, 1988–2002. J Am Soc Nephrol 17 ( 4 ): 1143 – 1150.
dc.identifier.citedreferenceWestover AJ, Buffington DA, Humes HD. 2012; Enhanced propagation of adult human renal epithelial progenitor cells to improve cell sourcing for tissue‐engineered therapeutic devices for renal diseases. J Tissue Eng Regen Med 6 ( 8 ): 589 – 597.
dc.identifier.citedreferenceInstitute for Laboratory Animal Research, Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. 1996. The 1996 Guide for the Care and Use of Laboratory Animals ILAR J (1997) 38 ( 1 ): 41 – 48. doi: 10.1093/ilar.38.1.4
dc.identifier.citedreferenceJekarl DW, Lee SY, Lee J et al. 2013; Procalcitonin as a diagnostic marker and IL‐6 as a prognostic marker for sepsis. Diagn Microbiol Infect Dis 75 ( 4 ): 342 – 347.
dc.identifier.citedreferenceKato S, Chmielewski M, Honda H et al. 2008; Aspects of immune dysfunction in end‐stage renal disease. Clin J Am Soc Nephrol 3 ( 5 ): 1526 – 1533.
dc.identifier.citedreferenceAmerican College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. 1992; Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20 ( 6 ): 864 – 874.
dc.identifier.citedreferenceBosmann M, Ward PA. 2013; The inflammatory response in sepsis. Trends Immunol 34 ( 3 ): 129 – 136.
dc.identifier.citedreferenceBuffington DA, Pino CJ, Chen L et al. 2012; Bioartificial renal epithelial cell system (BRECS): a compact, cryopreservable extracorporeal renal replacement device. Cell Med 4 ( 1 ): 33 – 43.
dc.identifier.citedreferenceBuffington DA, Westover AJ, Johnston KA et al. 2014; The bioartificial kidney. Transl Res 163 ( 4 ): 342 – 351.
dc.identifier.citedreferenceChertow GM, Levy EM, Hammermeister KE et al. 1998; Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 104 ( 4 ): 343 – 348.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.