Show simple item record

Comparison of predictive estimates of high‐latitude electrodynamics with observations of global‐scale Birkeland currents

dc.contributor.authorAnderson, Brian J.
dc.contributor.authorKorth, Haje
dc.contributor.authorWelling, Daniel T.
dc.contributor.authorMerkin, Viacheslav G.
dc.contributor.authorWiltberger, Michael J.
dc.contributor.authorRaeder, Joachim
dc.contributor.authorBarnes, Robin J.
dc.contributor.authorWaters, Colin L.
dc.contributor.authorPulkkinen, Antti A.
dc.contributor.authorRastaetter, Lutz
dc.date.accessioned2017-04-14T15:11:15Z
dc.date.available2018-04-02T18:03:24Zen
dc.date.issued2017-02
dc.identifier.citationAnderson, Brian J.; Korth, Haje; Welling, Daniel T.; Merkin, Viacheslav G.; Wiltberger, Michael J.; Raeder, Joachim; Barnes, Robin J.; Waters, Colin L.; Pulkkinen, Antti A.; Rastaetter, Lutz (2017). "Comparison of predictive estimates of high‐latitude electrodynamics with observations of global‐scale Birkeland currents." Space Weather 15(2): 352-373.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/136469
dc.description.abstractTwo of the geomagnetic storms for the Space Weather Prediction Center Geospace Environment Modeling challenge occurred after data were first acquired by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We compare Birkeland currents from AMPERE with predictions from four models for the 4–5 April 2010 and 5–6 August 2011 storms. The four models are the Weimer (2005b) field‐aligned current statistical model, the Lyon‐Fedder‐Mobarry magnetohydrodynamic (MHD) simulation, the Open Global Geospace Circulation Model MHD simulation, and the Space Weather Modeling Framework MHD simulation. The MHD simulations were run as described in Pulkkinen et al. (2013) and the results obtained from the Community Coordinated Modeling Center. The total radial Birkeland current, ITotal, and the distribution of radial current density, Jr, for all models are compared with AMPERE results. While the total currents are well correlated, the quantitative agreement varies considerably. The Jr distributions reveal discrepancies between the models and observations related to the latitude distribution, morphologies, and lack of nightside current systems in the models. The results motivate enhancing the simulations first by increasing the simulation resolution and then by examining the relative merits of implementing more sophisticated ionospheric conductance models, including ionospheric outflows or other omitted physical processes. Some aspects of the system, including substorm timing and location, may remain challenging to simulate, implying a continuing need for real‐time specification.Key PointsPresents the first comparison between observed field‐aligned currents and models previously evaluated for space weather operational useThe model and observed integrated currents are well correlated, but the ratio between them ranges from 1/3 to 3The 2‐D current densities are weakly correlated with observations implying significant areas for improvements in the models
dc.publisherThe National Academies Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBirkeland currents
dc.subject.otherAMPERE
dc.subject.othersimulation
dc.subject.othergeomagnetic storm
dc.subject.othervalidation
dc.titleComparison of predictive estimates of high‐latitude electrodynamics with observations of global‐scale Birkeland currents
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136469/1/swe20415_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136469/2/swe20415.pdf
dc.identifier.doi10.1002/2016SW001529
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceRidley, A. J., D. L. De Zeeuw, T. I. Gombosi, and K. G. Powell ( 2001 ), Using steady state MHD results to predict the global state of the magnetosphere‐ionosphere system, J. Geophys. Res., 106, 30,067 – 30,076, doi: 10.1029/2000JA002233.
dc.identifier.citedreferencePulkkinen, A., et al. ( 2013 ), Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations, Space Weather, 11, 369 – 385, doi: 10.1002/swe.20056.
dc.identifier.citedreferenceRaeder, J., Y. L. Wang, and T. J. Fuller‐Rowell ( 2001 ), Geomagnetic storm simulation with a coupled magnetosphere‐ionosphere‐thermosphere model, in Space Weather, AGU Geophys. Monogr. Ser., vol. 125, pp. 377, AGU, Washington, D. C.
dc.identifier.citedreferenceRaeder, J., D. Larson, W. Li, E. L. Kepko, and T. Fuller‐Rowell ( 2008 ), OpenGGCM simulations for the THEMIS mission, Space Sci. Rev., 141, 535, doi: 10.1007/s1121400894215.
dc.identifier.citedreferenceRaeder, J., P. Zhu, Y. Ge, and G. L. Siscoe ( 2010 ), OpenGGCM simulation of a substorm: Axial tail instability and ballooning mode preceding substorm onset, J. Geophys. Res., 115, A00l16, doi: 10.1029/2010JA015876.
dc.identifier.citedreferenceRidley, A. J., K. C. Hansen, G. Tóth, D. L. De Zueew, T. I. Gombosi, and K. G. Powell ( 2002 ), University of Michigan MHD results of the GGCM metrics challenge, J. Geophys. Res., 107 ( A10 ), 1290, doi: 10.1029/2001JA000253.
dc.identifier.citedreferenceRidley, A. J., T. I. Gombosi, and D. L. Zeeuw ( 2004 ), Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 22, 567 – 584, doi: 10.5194/angeo-22-567-2004.
dc.identifier.citedreferenceRobinson, R. M., R. R. Vondrak, K. Miller, T. Dabbs, and D. Hardy ( 1987 ), On calculating ionospheric conductances from the flux and energy of precipitating electrons, J. Geophys. Res., 92, 2565 – 2569, doi: 10.1029/JA092iA03p02565.
dc.identifier.citedreferenceSiscoe, G., J. Raeder, and A. Ridley ( 2004 ), Transpolar potential saturation models compared, J. Geophys. Res., 109, A09203, doi: 10.1029/2003JA010318.
dc.identifier.citedreferenceSmith, C. W., J. L’Heureux, N. F. Ness, M. H. Acuña, L. F. Burlaga, and J. Scheifele ( 1998 ), The ACE Magnetic Fields Experiment, Space Sci. Rev., 86, 613 – 632.
dc.identifier.citedreferenceToffoletto, F. R., S. Sazykin, R. W. Spiro, and R. A. Wolf ( 2003 ), Inner magnetospheric modeling with the Rice Convection Model, Space Sci. Rev., 107, 175 – 193.
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comp. Phys., 231, 870 – 903, doi: 10.1016/j.jcp.2011.02.006.
dc.identifier.citedreferenceTsurutani, B. T., and G. S. Lakhina ( 2014 ), An extreme coronal mass ejection and consequences for the magnetosphere and Earth, Geophys. Res. Lett., 41, 287 – 292, doi: 10.1002/2013GL058825.
dc.identifier.citedreferenceWaters, C. L., B. J. Anderson, and K. Liou ( 2001 ), Estimation of global field aligned currents using Iridium magnetometer data, Geophys. Res. Lett., 28, 2165 – 2168, doi: 10.1029/2000GL012725.
dc.identifier.citedreferenceWeimer, D. R. ( 2005a ), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi: 10.1029/2004JA010884.
dc.identifier.citedreferenceWeimer, D. R. ( 2005b ), Predicting surface geomagnetic variations using ionospheric electrodynamic models, J. Geophys. Res., 110, A12307, doi: 10.1029/2005JA011270.
dc.identifier.citedreferenceWelling, D. T., and S. G. Zaharia ( 2012 ), Ionospheric outflow and cross polar cap potential: What is the role of magnetospheric inflation?, Geophys. Res. Lett., 39, L23101, doi: 10.1029/2012GL054228.
dc.identifier.citedreferenceWelling, D. T., et al. ( 2015a ), The Earth: Plasma sources, losses, and transport processes, Space Sci. Rev., 192, 145 – 208, doi: 10.1007/s11214-015-0187-2.
dc.identifier.citedreferenceWelling, D. T., V. K. Jordanova, A. Glocer, G. Toth, M. W. Liemohn, and D. R. Weimer ( 2015b ), The two‐way relationship between ionospheric outflow and the ring current, J. Geophys. Res. Space Physics, 120, 4338 – 4353, doi: 10.1002/2015JA021231.
dc.identifier.citedreferenceWelling, D. T., B. J. Anderson, G. Crowley, A. A. Pulkkinen, and L. Rastaetter ( 2016 ), Exploring predictive performance: A reanalysis of the geospace model transition challenge, Space Weather, 14, doi: 10.1002/2016SW001505.
dc.identifier.citedreferenceWilder, F. D., G. Crowley, B. J. Anderson, and A. D. Richmond ( 2012 ), Intense dayside Joule heating during the 5 April 2010 geomagnetic storm recovery phase observed by AMIE and AMPERE, J. Geophys. Res., 117, A05207, doi: 10.1029/2011JA017262.
dc.identifier.citedreferenceWiltberger, M. ( 2015 ), Review of global simulation studies of effect of ionospheric outflow on magnetosphere‐ionosphere system dynamics, in Magnetotails in the Solar System, pp. 373 – 392, John Wiley, Hoboken, New Jersey, doi: 10.1002/978111884232.
dc.identifier.citedreferenceWiltberger, M., W. Wang, A. G. Burns, S. C. Solomon, J. G. Lyon, and C. C. Goodrich ( 2004 ), Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses, J. Atmos. Sol. Terr. Phys., 66 ( 1 ), 1411 – 1423, doi: 10.1016/j.jastp.2004.03.026.
dc.identifier.citedreferenceWiltberger, M., W. Lotko, J. G. Lyon, P. Damiano, and V. Merkin ( 2010 ), Influence of cusp O + outflow on magnetotail dynamics in a multifluid MHD model of the magnetosphere, J. Geophys. Res., 115, A00J05, doi: 10.1029/2010JA015579.
dc.identifier.citedreferenceWiltberger, M., E. J. Rigler, V. Merkin, and J. G. Lyon ( 2016 ), Structure of high latitude currents in magnetosphere‐ionosphere models, Space Sci. Rev., 1 – 24, doi: 10.1007/s11214-016-0271-2.
dc.identifier.citedreferenceWiltberger, M., E. J. Rigler, V. Merkin, and J. G. Lyon ( 2016 ), Structure of high latitude currents in magnetosphere‐ionosphere models, Space Sci. Rev., 1–41, doi: 10.1007/s11214-016-0271-2.
dc.identifier.citedreferenceWinglee, R. M., D. Chua, M. Brittnacher, G. K. Parks, and G. Lu ( 2002 ), Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross‐polar cap potential, J. Geophys. Res., 107 ( A9 ), 1237, doi: 10.1029/2001JA000214.
dc.identifier.citedreferenceYu, Y., and A. J. Ridley ( 2008 ), Validation of the Space Weather Modeling Framework using ground‐based magnetometers, Space Weather, 6, S05002, doi: 10.1029/2007SW000345.
dc.identifier.citedreferenceAmm, O. ( 2002 ), Method of characteristics for calculating ionospheric electrodynamics from multisatellite and ground‐based radar data, J. Geophys. Res., 107 ( A ), 1270, doi: 10.1029/2001JA005077.
dc.identifier.citedreferenceAmm, O., A. Aruliah, S. C. Buchert, R. Fujii, J. W. Gjerloev, A. Ieda, T. Matsuo, C. Stolle, H. Vanhamäki, and A. Yoshikawa ( 2008 ), Towards understanding the electrodynamics of the 3‐dimensional high‐latitude ionosphere: Present and future, Ann. Geophys., 26 ( 1 ), 3913 – 3932, doi: 10.5194/angeo-26-3913-2008.
dc.identifier.citedreferenceAnderson, B. J., T. A. Potemra, P. F. Bythrow, L. J. Zanetti, D. B. Holland, and J. D. Winningham ( 1993 ), Auroral currents during the magnetic storm of November 8 and 9, 1991: Observations from the Upper Atmosphere Research Satellite Particle Environment Monitor, Geophys. Res. Lett., 20, 1327 – 1330, doi: 10.1029/93GL01106.
dc.identifier.citedreferenceAnderson, B. J., K. Takahashi, and B. A. Toth ( 2000 ), Sensing global Birkeland currents with Iridium® engineering magnetometer data, Geophys. Res. Lett., 27, 4045 – 4048, doi: 10.1029/2000GL000094.
dc.identifier.citedreferenceAnderson, B. J., H. Korth, C. L. Waters, D. L. Green, and P. Stauning ( 2008 ), Statistical Birkeland current distributions from magnetic field observations by the Iridium constellation, Ann. Geophys., 26, 671 – 687, doi: 10.5194/angeo-26-671-2008.
dc.identifier.citedreferenceAnderson, B. J., H. Korth, C. L. Waters, D. L. Green, V. G. Merkin, R. J. Barnes, and L. P. Dryud ( 2014 ), Development of large‐scale Birkeland currents determined from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, Geophys. Res. Lett., 41, 3017 – 3025, doi: 10.1002/2014GL059941.
dc.identifier.citedreferenceArcher, M. O., T. S. Horbury, J. P. Eastwood, J. M. Weygand, and T. K. Yeoman ( 2013 ), Magnetospheric response to magnetosheath pressure pulses: A low‐pass filter effect, J. Geophys. Res. Space Physics, 118, 5454 – 5466, doi: 10.1002/jgra.50519.
dc.identifier.citedreferenceBrambles, O. J., W. Lotko, P. A. Damiano, B. Zhang, M. Wiltberger, and J. Lyon ( 2010 ), Effects of causally driven cusp O + outflow on the storm time magnetosphere‐ionosphere system using a multifluid global simulation, J. Geophys. Res., 115, A00J04, doi: 10.1029/2010JA015469.
dc.identifier.citedreferenceBrambles, O. J., W. Lotko, B. Zhang, M. Wiltberger, J. Lyon, and R. J. Strangeway ( 2011 ), Magnetosphere sawtooth oscillations induced by ionospheric outflow, Science, 332, 1183, doi: 10.1126/science.1202869.
dc.identifier.citedreferenceClausen, L. B. N., J. B. H. Baker, J. M. Ruohoniemi, S. E. Milan, and B. J. Anderson ( 2012 ), Dynamics of the region 1 Birkeland current oval derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), J. Geophys. Res., 117, A06233, doi: 10.1029/2012JA017666.
dc.identifier.citedreferenceCosgrove, R. B., et al. ( 2014 ), Empirical model of Poynting flux derived from FAST data and a cusp signature, J. Geophys. Res. Space Physics, 119, 411 – 430, doi: 10.1002/2013JA019105.
dc.identifier.citedreferenceCouncil, N. R. ( 2008 ), Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report, The National Academies Press, Washington, DC.
dc.identifier.citedreferenceCowley, S. W. H. ( 2000 ), Magnetosphere‐ionosphere interactions: A tutorial review, in Magnetospheric Current Systems, Geophys. Monogr. Ser., vol. 118, edited by S. Ohtani et al., AGU, Washington, D. C.
dc.identifier.citedreferenceCoxon, J. C., S. E. Milan, L. B. N. Clausen, B. J. Anderson, and H. Korth ( 2014 ), A superposed epoch analysis of the regions 1 and 2 Birkeland currents observed by AMPERE during substorms 2014, Development of large‐scale Birkeland currents determined from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, J. Geophys. Res. Space Physics., 119, 9834 – 9846, doi: 10.1002/2014JA020500.
dc.identifier.citedreferenceCurto, J., J. Castell, and F. Del Moral ( 2016 ), Sfe: Waiting for the big one, J. Space Weather Space Clim., 6, A23, doi: 10.1051/swsc/2016018.
dc.identifier.citedreferenceDe Zeeuw, D. L., T. I. Gombosi, C. P. T. Groth, K. G. Powell, and Q. F. Stout ( 2000 ), An adaptive MHD method for global space weather simulations, IEEE Trans. Plasma Sci., 28, 1956 – 1965, doi: 10.1109/27.902224.
dc.identifier.citedreferenceDe Zeeuw, D. L., S. Sazykin, R. A. Wolf, T. I. Gombosi, A. J. Ridley, and G. Tóth ( 2004 ), Coupling of a global MHD code and an inner magnetospheric model: Initial results, J. Geophys. Res., 109, A12219, doi: 10.1029/2003JA010366.
dc.identifier.citedreferenceDeJong, A. D., A. J. Ridley, X. Cai, and C. R. Clauer ( 2009 ), A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections, J. Geophys. Res., 114, A08215, doi: 10.1029/2008JA013870.
dc.identifier.citedreferenceDimant, Y. S., and M. M. Oppenheim ( 2011a ), Magnetosphere‐ionosphere coupling through E region turbulence: 1. Energy budget, J. Geophys. Res., 116, A09303, doi: 10.1029/2011JA016648.
dc.identifier.citedreferenceDimant, Y. S., and M. M. Oppenheim ( 2011b ), Magnetosphere‐ionosphere coupling through E region turbulence: 2. Anomalous conductivities and frictional heating, J. Geophys. Res., 116, A09304, doi: 10.1029/2011JA016649.
dc.identifier.citedreferenceFreeman, M. P., N. C. Freeman, and C. J. Farrugia ( 1995 ), A linear perturbation analysis of magnetopause motion in the Newton‐Busemann limit, Ann. Geophys., 13, 907 – 918, doi: 10.1007/s00585-995-0907-0.
dc.identifier.citedreferenceGarcía, K. S., V. G. Merkin, and W. J. Hughes ( 2010 ), Effects of nightside O + outflow on magnetospheric dynamics: Results of multifluid MHD modeling, J. Geophys. Res., 115, A00J09, doi: 10.1029/2010JA015730.
dc.identifier.citedreferenceGlocer, A., G. Tóth, Y. J. Ma, T. Gombosi, J.‐C. Zhang, and L. M. Kistler ( 2009 ), Multi‐fluid BATS‐R‐US: Magnetospheric composition and dynamics during geomagnetic storms, initial results, J. Geophys. Res., 114, A12203, doi: 10.1029/2009JA014418.
dc.identifier.citedreferenceGreen, D. L., C. L. Waters, H. Korth, B. J. Anderson, A. J. Ridley, and R. J. Barnes ( 2007 ), Technique: Large‐scale ionospheric conductance estimated from combined satellite and ground‐based electromagnetic data, J. Geophys. Res., 112 ( A5, A05303), doi: 10.1029/2006JA012069.
dc.identifier.citedreferenceHe, M., J. Vogt, H. Luhr, E. Sorbalo, A. Blagau, G. Le, and G. Lu ( 2012 ), A high‐resolution model of field‐aligned currents through empirical orthogonal functions analysis (MFACE), Geophys. Res. Lett., 39, L18105, doi: 10.1029/2012GL053168.
dc.identifier.citedreferenceKleiber, W., B. Hendershott, S. R. Sain, and M. Wiltberger ( 2016 ), Feature‐based validation of the Lyon‐Fedder‐Mobarry magnetohydrodynamical model, J. Geophys. Res. Space Physics, 121, 1192 – 1200, doi: 10.1002/2015JA021825.
dc.identifier.citedreferenceKnight, S. ( 1973 ), Parallel electric fields, Planet. Space Sci., 21, 741 – 750.
dc.identifier.citedreferenceKorth, H., B. J. Anderson, H. Frey, and C. L. Waters ( 2005 ), High‐latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF, Ann. Geophys., 23, 1295 – 1310, doi: 10.5194/angeo-23-1295-2005.
dc.identifier.citedreferenceKorth, H., B. J. Anderson, J. M. Ruohoniemi, H. U. Frey, C. L. Waters, T. J. Immel, and D. L. Green ( 2008 ), Global observations of electromagnetic and particle energy flux for an event during northern winter with southward interplanetary magnetic field, Ann. Geophys., 26, 1415 – 1430, doi: 10.5194/angeo-26-1415-2008.
dc.identifier.citedreferenceKorth, H., B. J. Anderson, and C. L. Waters ( 2010 ), Statistical analysis of the dependence of large‐scale Birkeland currents on solar wind parameters, Ann. Geophys., 28, 515 – 530.
dc.identifier.citedreferenceKronberg, E. A., et al. ( 2014 ), Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models, Space Sci. Rev., 184, 173 – 235, doi: 10.1007/s11214-014-0104-0.
dc.identifier.citedreferenceLove, J. J., E. J. Rigler, A. Pulkkinen, and P. Riley ( 2015 ), On the lognormality of historical magnetic storm intensity statistics: Implications for extreme‐event probabilities, Geophys. Res. Lett., 42, 6544 – 6553, doi: 10.1002/2015GL064842.
dc.identifier.citedreferenceLu, G., M. E. Hagan, K. Häusler, E. Doornbos, S. Bruinsma, B. J. Anderson, and H. Korth ( 2014 ), Global ionospheric and thermospheric response to the 5 April 2010 geomagnetic storm: An integrated data‐model investigation, J. Geophys. Res. Space Physics, 119, 10,358 – 10,375, doi: 10.1002/2014JA020555.
dc.identifier.citedreferenceLyatskaya, S., W. Lyatsky, and G. V. Khazanov ( 2014 ), Effect of interhemispheric field‐aligned currents on Region‐1 currents, Geophys. Res. Lett., 41, 3731 – 3737, doi: 10.1002/2014GL060413.
dc.identifier.citedreferenceLyon, J. G., J. A. Fedder, and C. M. Mobarry ( 2004 ), The Lyon‐Fedder‐Mobarry (LFM) global MHD magnetospheric simulation code, J. Atmos. Sol. Terr. Phys., 66, 1333 – 1350, doi: 10.1016/j.jastp.2004.03.020.
dc.identifier.citedreferenceLyons, L. R., et al. ( 2016 ), 2013 March 17 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric effects, J. Geophys. Res. Space Physics, 121, 10,880 – 10,897, doi: 10.1002/2016JA023237.
dc.identifier.citedreferenceMarsal, S., A. D. Richmond, A. Maute, and B. J. Anderson ( 2012 ), Forcing the TIEGCM model with Birkeland currents from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, J. Geophys. Res., 117, A06308, doi: 10.1029/2011JA017416.
dc.identifier.citedreferenceMatsuo, T., D. J. Knipp, A. D. Richmond, L. Kilcommons, and B. J. Anderson ( 2015 ), Inverse procedure for high‐latitude ionospheric electrodynamics: Analysis of satellite‐borne magnetometer data, J. Geophys. Res. Space Physics, 120, 5241 – 5251, doi: 10.1002/2014JA020565.
dc.identifier.citedreferenceMcComas, D. J., S. J. Bame, P. L. Barker, W. C. Feldman, J. L. Phillips, P. Riley, and J. W. Griffee ( 1998 ), Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86, 563 – 612.
dc.identifier.citedreferenceMcGranaghan, R., D. J. Knipp, T. Matsuo, and E. Cousins ( 2016 ), Optimal interpolation analysis of high‐latitude ionospheric Hall and Pedersen conductivities: Application to assimilative ionospheric electrodynamics reconstruction, J. Geophys. Res. Space Physics, 121, 4898 – 4923, doi: 10.1002/2016JA022486.
dc.identifier.citedreferenceMerkin, V. G., and J. G. Lyon ( 2010 ), Effects of the low‐latitude ionospheric boundary condition on the global magnetosphere, J. Geophys. Res., 115, A10202, doi: 10.1029/2010JA015461.
dc.identifier.citedreferenceMerkin, V. G., G. Milikh, K. Papadopoulos, J. Lyon, Y. S. Dimant, A. S. Sharma, C. Goodrich, and M. Wiltberger ( 2005a ), Effect of anomalous electron heating on the transpolar potential in the LFM global MHD model, Geophys. Res. Lett., 32, L22101, doi: 10.1029/2005GL023315.
dc.identifier.citedreferenceMerkin, V. G., A. S. Sharma, K. Papadopoulos, G. Milikh, J. Lyon, and C. Goodrich ( 2005b ), Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation, J. Geophys. Res., 110, A09203, doi: 10.1029/2004JA010993.
dc.identifier.citedreferenceMerkin, V. G., A. S. Sharma, K. Papadopoulos, G. Milikh, J. Lyon, and C. Goodrich ( 2005c ), Relationship between the ionospheric conductance, field aligned current, and magnetopause geometry: Global MHD simulations, Planet. Space Sci., 53, 873, doi: 10.1016/j.pss.2005.04.001.
dc.identifier.citedreferenceMerkin, V. G., B. J. Anderson, J. G. Lyon, H. Korth, M. Wiltberger, and T. Motoba ( 2013 ), Global evolution of Birkeland currents on 10‐min time scales: MHD simulations and observations, J. Geophys. Res. Space Physics, 118, 4977 – 4997, doi: 10.1002/jgra.50466.
dc.identifier.citedreferenceMerkine, V. G., K. Papadopoulos, G. Milikh, A. S. Sharma, X. Shao, J. Lyon, and C. Goodrich ( 2003 ), Effects of the solar wind electric field and ionospheric conductance on the cross polar cap potential: Results of global MHD modeling, Geophys. Res. Lett., 30 ( 23 ), 2180, doi: 10.1029/2003GL017903.
dc.identifier.citedreferenceMuhlbacher, S., C. J. Farrugia, J. Raeder, H. K. Biernat, and R. B. Torbert ( 2005 ), A statistical investigation of dayside erosion showing saturation response, J. Geophys. Res., 110, A11207, doi: 10.1029/2005JA011177.
dc.identifier.citedreferenceMurr, D. L., and W. J. Hughes ( 2007 ), The coherence between the IMF and high‐latitude ionospheric flows: The dayside magnetosphere‐ionosphere low‐pass filter, J. Atmos. Sol. Terr. Phys., 69, 223 – 233, doi: 10.1016/j.jastp.2006.07.019.
dc.identifier.citedreferenceNational Science and Technology Council ( 2015a ), National Space Weather Strategy, Executive Office of the President (EOP), USA. [Available at https://whitehouse.gov/sites/default/files/microsites/ostp/final_nationalspaceweatherstrategy_20151028.pdf.]
dc.identifier.citedreferenceNational Science and Technology Council ( 2015b ), National Space Weather Action Plan, Executive Office of the President (EOP), USA. [Available at https://www.whitehouse.gov/sites/default/files/microsites/ostp/final_nationalspaceweatheractionplan_20151028.pdf.]
dc.identifier.citedreferenceNgwira, C. M., A. Pulkkinen, M. M. Kuznetsova, and A. Glocer ( 2014 ), Modeling extreme “Carrington‐type” space weather events using three‐dimensional global MHD simulations, J. Geophys. Res. Space Physics, 119, 4456 – 4474, doi: 10.1002/2013JA019661.
dc.identifier.citedreferenceNorth American Electric Reliability Corporation GMD Task Force ( 2012 ), 2012 Special Reliability Assessment Interim Report: Effects of geomagnetic disturbances on the bulk power system, NERC, February 2012.
dc.identifier.citedreferenceOhtani, S., H. Korth, S. Wing, E. R. Talaat, H. U. Frey, and J. W. Gjerloev ( 2012 ), The double auroral oval in the dusk‐midnight sector: Formation, mapping and dynamics, J. Geophys. Res., 117, A08203, doi: 10.1029/2011JA017501.
dc.identifier.citedreferenceOuellette, J. E., O. J. Brambles, J. G. Lyon, W. Lotko, and B. N. Rogers ( 2013 ), Properties of outflow‐driven sawtooth substorms, J. Geophys. Res. Space Physics, 118, 3223 – 3232, doi: 10.1002/jgra.50309.
dc.identifier.citedreferencePartamies, N., T. I. Pulkkinen, R. L. McPherron, K. McWilliams, C. R. Bryant, E. Tanskanen, H. J. Singer, G. D. Reeves, and M. F. Thomsen ( 2009 ), Different magnetospheric modes: Solar wind driving and coupling efficiency, Ann. Geophys., 27, 4281 – 4291, doi: 10.5194/angeo-27-4281-2009.
dc.identifier.citedreferencePembroke, A., F. Toffoletto, S. Sazykin, M. Wiltberger, J. Lyon, V. Merkin, and P. Schmitt ( 2012 ), Initial results from a dynamic coupled magnetosphere‐ionosphere‐ring current model, J. Geophys. Res., 117, A02211, doi: 10.1029/2011JA016979.
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309, doi: 10.1006/jcph.1999.6299.
dc.identifier.citedreferencePulkkinen, A. A., et al. ( 2017 ), Geomagnetically induced currents: Science, engineering and applications readiness, Space Weather, 15, doi: 10.1002/2016SW001501.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.